1,579 research outputs found

    Heavy-to-light ratios as a test of medium-induced energy loss at RHIC and the LHC

    Full text link
    The ratio of nuclear modification factors of high-pTp_T heavy-flavored mesons tolight-flavored hadrons (heavy-to-light ratio) is shown to be a sensitive tool to test medium-induced energy loss at RHIC and LHC energies. Heavy-to-light ratios of DD mesons at RHIC in the region 7<pT<127<p_T<12 GeV, and of DD and BB mesons at the LHC in the region 10<pT<2010<p_T<20 GeV, are proposed for such a test. Finally, the different contributions to the nuclear modification factor for electrons at RHIC are analyzed. Preliminary PHENIX and STAR data are compatible with radiative energy loss provided the contribution of electrons from beauty decays is small compared to that from charm.Comment: 5 pages, latex, 4 eps figs included using graphicx; to appear in the proceedings of 18th International Conference on Ultrarelativistic Nucleus-Nucleus Collisions: Quark Matter 2005 (QM 2005), Budapest, Hungary, 4-9 Aug 200

    Nuclear Structure Functions and Heavy Flavour Leptoproduction Off the Nucleus at Small x in Perturbative QCD

    Get PDF
    Nuclear structure functions and cross-sections for heavy flavour production in lepton-nucleus collisions are investigated in the low xx region accessible now or in the near future. The scattering on a heavy nucleus is described by the sum of fan diagrams of BFKL pomerons, which is exact in the high-colour limit. The initial condition for the evolution at x=0.01x=0.01 is taken from a saturation model, which reproduces the experimental data on the proton. The AA dependence of the structure functions is well described by a power factor AαA^\alpha, with α\alpha reaching values as low as 1/2 at extremely low xx. The total cross-sections for heavy flavour production reach values of the order of mb, and the corresponding transverse momentum distributions are sizeable up to transverse momenta larger than the initial large scale Q2+4mf2\sqrt{Q^2+4m_f^2}.Comment: LaTeX2e, 16 pages, 6 eps figures included using epsfig; final version, some comments added, results and conclusions unchange

    On correlations and discreteness in non-linear QCD evolution

    Full text link
    We consider modifications of the standard non-linear QCD evolution in an attempt to account for some of the missing ingredients discussed recently, such as correlations, discreteness in gluon emission and Pomeron loops. The evolution is numerically performed using the Balitsky-Kovchegov equation on individual configurations defined by a given initial value of the saturation scale, for reduced rapidities y=(αsNc/π)Y<10y=(\alpha_s N_c/\pi) Y<10. We consider the effects of averaging over configurations as a way to implement correlations, using three types of Gaussian averaging around a mean saturation scale. Further, we heuristically mimic discreteness in gluon emission by considering a modified evolution in which the tails of the gluon distributions are cut-off. The approach to scaling and the behavior of the saturation scale with rapidity in these modified evolutions are studied and compared with the standard mean-field results. For the large but finite values of rapidity explored, no strong quantitative difference in scaling for transverse momenta around the saturation scale is observed. At larger transverse momenta, the influence of the modifications in the evolution seems most noticeable in the first steps of the evolution. No influence on the rapidity behavior of the saturation scale due to the averaging procedure is found. In the cut-off evolution the rapidity evolution of the saturation scale is slowed down and strongly depends on the value of the cut-off. Our results stress the need to go beyond simple modifications of evolution by developing proper theoretical tools that implement such recently discussed ingredients.Comment: 20 pages, LaTeX, 18 eps figures included using epsfig; changes in v3: new kind of averaging added, 5 new plots, discussions and conclusions extended, final versio

    On the long-range correlations in hadron-nucleus collisions

    Get PDF
    Long-range correlations between multiplicities in different rapidity windows in hadron-nucleus collisions are analyzed. After recalling the standard results in the probabilistic model, we study them in the framework of perturbative QCD. Considering interacting BFKL pomerons in the form of fan diagrams coupled to a dilute projectile, analytic estimates are done for very large rapidities. The correlation strength results weakly depending on energy and centrality or nuclear size, and generically greater than unity. Finally, we turn to the Color Glass Condensate framework. For a saturated projectile and considering the most feasible experimental situation of forward and backward rapidity windows symmetric around the center-of-mass, the resulting correlation strength turns out to be larger than unity and shows a non-monotonic behavior with increasing energy, first increasing and then decreasing to a limiting value. Its behavior with increasing centrality or nuclear size depends on the considered rapidity windows.Comment: 17 pages, LaTeX, 6 eps figures included using graphicx; v2: error in the CGC formula corrected, conclusions of the corresponding section changed accordingl

    Study of the derivative expansions for the nuclear structure functions

    Get PDF
    We study the convergence of the series expansions sometimes used in the analysis of the nuclear effects in Deep Inelastic Scattering (DIS) proccesses induced by leptons. The recent advances in statistics and quality of the data, in particular for neutrinos calls for a good control of the theoretical uncertainties of the models used in the analysis. Using realistic nuclear spectral functions which include nucleon correlations, we find that the convergence of the derivative expansions to the full results is poor except at very low values of xx

    Relating high-energy lepton-hadron, proton-nucleus and nucleus-nucleus collisions through geometric scaling

    Full text link
    A characteristic feature of small-x lepton-proton data from HERA is geometric scaling -- the fact that over a wide range of x and Q^2 all data can be described by a single variable Q2/Qsat2(x)Q^2/Q_{sat}^2(x), with all x-dependence encoded in the so-called saturation momentum Qsat(x)Q_{sat}(x). Here, we observe that the same scaling ansatz accounts for nuclear photoabsorption cross sections and favors the nuclear dependence Qsat,A2AαQsat2Q_{sat,A}^2\propto A^{\alpha}Q_{sat}^2, α4/9\alpha \simeq 4/9. We then make the empirical finding that the same A-dependence accounts for the centrality evolution of the multiplicities measured in Au+Au collisions at RHIC. It also allows to parametrize the high-p_t particle suppression in d+Au collisions at forward rapidities. If these geometric scaling properties have a common dynamical origin, then this A-dependence of Qsat,A2Q_{sat,A}^2 should emerge as a consequence of the underlying dynamical model.Comment: 4 pages, 3 postscript figure

    Inclusive diffraction in future electron-proton and electron-ion colliders

    Get PDF
    We analyse the possibilities for the study of inclusive diffraction offered by future electron--proton/nucleus colliders in the TeV regime, the Large Hadron-electron Collider as an upgrade of the HL-LHC and the Future Circular Collider in electron-hadron mode. Compared to epep collisions at HERA, we find an extension of the available kinematic range in xx by a factor of order 2020 and of the maximum Q2Q^2 by a factor of order 100100 for LHeC, while the FCC version would extend the coverage by a further order of magnitude both in xx and Q2Q^2. This translates into a range of available momentum fraction of the diffractive exchange with respect to the hadron (ξ\xi), down to 10410510^{-4}-10^{-5} for a wide range of the momentum fraction of the parton with respect to the diffractive exchange (β\beta). Using the same framework and methodology employed in previous studies at HERA, considering only the experimental uncertainties and not those stemming from the functional form of the initial conditions or other ones of theoretical origin, and under very conservative assumptions for the luminosities and systematic errors, we find an improvement in the extraction of diffractive parton densities from fits to reduced cross sections for inclusive coherent diffraction in epep by about an order of magnitude. For eAeA, we also perform the simulations for the Electron Ion Collider. We find that an extraction of the currently unmeasured nuclear diffractive parton densities is possible with similar accuracy to that in epep.Comment: 24 pages, 16 figure
    corecore