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Abstract. We study the convergence of the series expansions sometimes used in the

analysis of the nuclear effects in Deep Inelastic Scattering (DIS) proccesses induced

by leptons. The recent advances in statistics and quality of the data, in particular

for neutrinos calls for a good control of the theoretical uncertainties of the models

used in the analysis. Using realistic nuclear spectral functions which include nucleon

correlations, we find that the convergence of the derivative expansions to the full results

is poor except at very low values of x.

PACS numbers: 13.15.+g,13.60.Hb,25.30.-c

1. Introduction

The advent of new and high statistics deeply inelastic neutrino scattering experiments

apart from providing valuable data on F2 and xF3[1, 2] has shown again the importance

of nuclear effects that render difficult the extraction of the nucleon structure functions.

Furthermore, the use of nuclear targets is necessary due to the smallness of the cross

sections. Qualitatively, the nuclear effects are well known. Shadowing, antishadowing,

Fermi motion, binding,... have all been widely studied for charged leptons in the context

of the European Muon Collaboration (EMC) effect. For a review, see [3, 4]. Moreover,

it is well known that nuclear effects are substantially different for neutrino reactions due

to the presence of the axial current and the different valence and sea quark contributions

for each observable [5]. This situation asks for a detailed and quantitative microscopical

understanding of the nuclear effects, rather than the parametrizations that have been

used sometimes, like recently by the NuTeV Collaboration [2].

One of the basic ingredients in all calculations is the nuclear spectral function.

This presents some serious difficulties, as these functions are not so well known to

the precision level reached by current experiments. Therefore, the analysis might

introduce unwanted model dependences. However, it was soon noticed that under some

approximations the nuclear structure functions could be written as simple expansions

on the nucleon structure functions and their derivatives. All the nuclear information

would then be encoded in the expected values of some nuclear magnitudes, like the

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Digital.CSIC

https://core.ac.uk/display/36027265?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://arXiv.org/abs/0807.5055v1


Study of the derivative expansions for the nuclear structure functions 2

average kinetic energy of the nucleons or the mean nucleon removal energy. These kind

of approximations, both for charged lepton and for neutrino induced reactions, have

been widely used in the literature [6, 7, 8, 9, 10, 11, 12, 13]. The aim of this paper is

to investigate the quality of these expansions and to what extent they could be used in

the analysis of lepton deep inelastic scattering experiments. In order to do that, once

the formalism is established in the next section, we will make a comparative study for

F2,3 and for a few typical nuclear spectral functions used in the literature.

2. Formalism

The nuclear structure functions can be written as a convolution of the nuclear spectral

functions and nucleon structure functions. See for instance [14] and references therein.

In the rest frame of the nucleus, the F2 and F3 structure functions are

F A
2 (x, Q2) =

∑

τ=p,n

∫

dǫ d3p

(2π)4
Pτ (ǫ,p)

(1 + γ pz

M
)

γ2

(

1 + 4
p2x′2

Q2
+ 6

x′2p2
⊥

Q2

)

F τ
2 (x′, Q2), (1)

F A
3 (x, Q2) =

∑

τ=p,n

∫

dǫ d3p

(2π)4
Pτ (ǫ,p)

(

1 +
pz

γM

)

x′

x
F τ

3 (x′, Q2), (2)

where Pp(n)(ǫ,p) is the nuclear spectral function, normalized to the number of protons

(neutrons) in the nucleus, and describes the probability of finding a proton (neutron)

with momentum p and removal energy ǫ. The four-momentum of the nucleon can be

written as p = (M + ǫ,p), with ǫ ≤ 0. The z axis is oriented in such a way that q lies

on it, p⊥ is the transverse momentum of the nucleon and γ = |q|/q0. Here, x′ is the

natural Bjorken variable for the nucleon in the nuclear medium, i.e. x′ = Q2/(2p · q);

while x is the Bjorken variable in the nucleon rest frame, x = Q2/(2Mq0). They are

related by

x′ =
x

z
where z = 1 +

ǫ

M
+ γ

pz

M
. (3)

For isoscalar nuclei such as 40Ca, only the isoscalar component of the spectral

function and the structure function have to be accounted for. When this is done (1)

and (2), these read as

F A
2 (x, Q2) = A

∫

dǫd3p

(2π)4
P0(ǫ,p)

(1 + γ pz

M
)

γ2

(

1 + 4
p2x′2

Q2
+ 6

x′2p2
⊥

Q2

)

F N
2

(x

z
, Q2

)

, (4)

F A
3 (x, Q2) = A

∫

dǫd3p

(2π)4
P0(ǫ,p)

(

1 +
pz

γM

)

x′

x
F N

3

(x

z
, Q2

)

, (5)

where P0(ǫ,p), which is the isoscalar part of the nuclear spectral function, is now

normalized to unity and we perform the calculations for the nuclear structure functions

averaged over neutrinos and antineutrinos, i.e., we only consider the symmetric ν + ν̄

combination [14, 15].

In a nucleus, the expected values of 〈ǫ〉
M

and
〈p2〉
M2 averaged with the nuclear spectral

function are much smaller than unity. Thus, z ≈ 1 and x′ ≈ x. Under these assumptions,
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we can perform a Taylor expansion of the integrands in expressions (4) and (5) around

z = 1, keeping terms up to order ǫ/M and p2/M2. In this way we will be able to take

out of the integral the structure functions and their derivatives and we will be left with

expected values of the removal energy ǫ and momentum squared p2. This statement

is true if the nuclear spectral functions only depend on the modulus of the momentum

|p| (as it is in the case of the nuclear spectral functions we will consider) and not upon

its direction. Under this assumption we can drop the expected values of pz (or any

other component of the momentum) and ǫ pz because they are identically zero due to

symmetry considerations.

We will begin with the structure function F A
2 (x, Q2). After performing the Taylor

expansion, keeping terms up to order ǫ/M and p2/M2, and dropping those terms which

go with 〈pz〉 /M or 〈ǫ pz〉 /M2 (because they are identically zero as stated above), we

obtain

F A
2 (x, Q2)

A
≃ F N

2

(

x, Q2
)

[

1 +
(

γ2 − 1
) 〈p2〉

3M2

]

− x
∂F N

2 (x, Q2)

∂x

[

〈ǫ〉

M
+

(

2 − γ2
) 〈p2〉

3M2

]

+

(

x
∂F N

2 (x, Q2)

∂x
+

x2

2

∂2F N
2 (x, Q2)

∂x2

)

γ2 〈p
2〉

3M2
, (6)

where 〈O〉 is the expected value of the operator O(ǫ,p) averaged with the isoscalar

spectral function P0(ǫ,p):

〈O〉 =

∫

dǫ d3p

(2π)4
P0(ǫ,p) O(ǫ,p). (7)

We have also used the fact that, with a nuclear spectral function which depends only

on the modulus of the momentum, the expected value of momentum squared is shared

equally among every squared component, i.e: 〈p2
i 〉 =

〈p2〉
3

. In the Bjorken limit, (γ → 1),

(6) coincides with the expansions used by Frankfurt et al. [6] and Ciofi degli Atti et al.

[7].

If we do the same for the nuclear structure function F A
3 (x, Q2), we obtain

F A
3 (x, Q2)

A
≃ F N

3

(

x, Q2
)

−
〈ǫ〉

M

{

F N
3

(

x, Q2
)

+ x
∂F N

3 (x, Q2)

∂x

}

+
〈p2〉

3M2

{

(

γ2 − 1
)

[

F N
3 + x

∂F N
3

∂x

]

+ γ2

[

x
∂F N

3

∂x
+

x2

2

∂2F N
3

∂x2

]}

, (8)

a similar result to that Kulagin [10]. To allow for an easier comparison, in the above

expressions, γ2 can be rewritten as

γ2 = 1 +
4M2x2

Q2
. (9)

Then, the only difference between (8) and that of [10] is that, for simplicity, we do

not consider the off-shell dependence in the nucleon structure function F N
3 . In our

calculation, the only source of off-shell dependence is through the nuclear spectral

function P0. Thus, we do not have the term ∂p2F N
3 that appears in [10] .

For our study we have selected the 40Ca nucleus, which is isoscalar and already will

show important medium effects. The free nucleon structure functions have been taken
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Figure 1. R2 = F2A

F2

ratio for 40Ca at Q2 = 20 GeV2 with the nuclear spectral

functions (I), (II) and (III) described in the text.

from [16] and we have chosen several different nuclear spectral functions. The first one

(labelled I) is a phenomenological model of the spectral function which has a mean field

part and high-momentum components coming from NN-correlations and it is described

in Kulagin et al. [15] where it was used in a global study of nuclear structure functions.

The second one (labelled II), that also contains correlations is taken from [17] where it

has been tested in the calculation of several electron scattering observables. The third

spectral function is taken from the semiphenomenological model based on a many body

calculation and the local density approximation that is described in [18] (labelled III).

Finally, we also consider the simple mean field spectral function of [12](labelled IV),

which was used in the study of the EMC effect.

3. Results

In figure 1, we show the results of the ratio R2 = F2A

F2
for the nuclear spectral functions

(I), (II) and (III). This gives us some idea of the uncertainties related to these functions.

The differences are small, even when the spectral funtions have been obtained with

diverse methods and are in fact quite different if one studies in detail their energy and

momentum dependence. However, the expected values of the mean removal energy 〈ǫ〉

and the mean kinetic energy per nucleon 〈T 〉 =
〈

p
2

2M

〉

are quite similar, as can be seen

in Table 1. In particular, spectral functions (I) and (III) that have quite close expected
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Table 1. Expected values of the nucleon removal and kinetic energies for the nuclear

spectral functions of Kulagin et al. [15] (I), Ankowski et al. [17] (II) and Fernandez de

Cordoba et al. [18] (III).

Spectral Function (I) (II) (III)

〈ǫ〉 (MeV) -49 -40 -47

〈T 〉 (MeV) 30.1 26.2 28.8

0.2 0.4 0.6
x

0.9

1

1.1

1.2

1.3

1.4

R
 2

(x
)

(I) Expansion
(I) Full
(II) Expansion+0.10
(II) Full+0.10
(III) Expansion+0.20
(III) Full+0.20

Figure 2. R2 = F2A

F2
ratio for 40Ca at Q2 = 20 GeV2. Comparison of the full results

with the approximation of (6) for the nuclear spectral functions (I), (II) and (III).

values also produce very similar ratios, whereas (II) which has an appreciably smaller

binding energy gives slightly larger values for the ratio.

In figure 2, we compare the full results for the same ratio (4) whith those obtained

making use of the approximation of (6). The use of this expansion has been assumed

to be a good approximation for x ≤ 0.5 [7, 8, 9]. Obviously, the series expansion agrees

well at low values of x with the full results. However, in the three cases produces lower

values for the ratio at intermediate x showing a maximum deviation of a 3-4% around

x = 0.5 − 0.6. This region, with a dip in the ratio, is dominated by the mean removal

energy (or equivalently the binding energy) per nucleon. Although this could look a

small error, we should remark that it means increasing the deviation due to nuclear

effects from the value 1 by around a 30% . At higher x’s, where Fermi motion of the

nucleons provides the dominant effect, the series expansions grow faster than the full

results and become larger for x & 0.65. Thus, we find that for typical nuclear spectral

functions the convergence of the series expansion is not so good except at very low x,
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Figure 3. R3 = F3A

F3

ratio for 40Ca at Q2 = 20 GeV2. Comparison of the full results

with the approximation of (8) for the nuclear spectral functions (I), (II) and (III).

where in any case other effects not considered here, like shadowing play a major role.

The results for the R3 = F3A

F3

ratio are shown in figure 3. The full model for R3

is given by (5) and the series expansion by (8). As it was the case for R2, there is

a dip region dominated by the binding energy and the Fermi motion of the nucleons

produces the large rising at high values of x. The comparison of the full results and

the series expansions shows the same features as for R2. The expansions systematically

underestimate the ratios at intermediate values of x and overestimate them for x > 0.7.

This overestimation of the effect of the Fermi motion was already discussed in [10].

There, it was also claimed that in the limit of high Q2 and for heavy nuclei the expansion

should be a good approxiamtion up to x . 0.75. However, after studying R2 and R3

at different Q2 values, apart from the one shown in this paper, we have found that for

medium nuclei the convergence of the series is only good at very low x where other

nuclear effects are very relevant.

In order to obtain a better convergence one would need to reach a higher order in the

expansions. This implies also the sensitivity to nuclear expected values of higher powers

of the nucleons momenta as < (p/M)4 >. One should notice that due to correlations

these expected values are not negligible [20, 19]. The three spectral functions considered

above contain high momentum components and one may expect any expansion up to

order p2 to fail to have a good convergence. To test this point, we have also calculated R2

for the case of a simpler mean field spectral function which does not incorporate nucleon
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Figure 4. R2 = F2A

F2
ratio for 40Ca. Comparison of the full results with the

approximation of (6) for the nuclear spectral functions (IV).

correlations and does not have those high momentum components [12]. This function

was used to analyse the A dependence of the position and magnitude of the dip. Here,

we have used the same parton distribution functions as in the original reference [12].

The results are shown in figure 4. In this case, there is an almost perfect agreement

between the full results and the expansion.

In summary, we have studied the quality of some series expansions commonly used

to incorporate approximately the nuclear effects in the analysis of DIS processes. We

have found that for realistic enough nuclear spectral functions, that include nucleon

correlations and have high momentum components, the convergence of the series to the

full result is poor except at very low values of x, where in fact, other nuclear effects,

like shadowing or antishadowing, are more relevant. At high x values, in the Fermi

motion region, the expansions clearly overestimate the full result. This was known and

expected. However, even at relatively low x values, where the expansions were suppossed

to provide a good approximation, we have found that they systematically underestimate

the value of F2 and F3, artificially increasing the size of the nuclear corrections.
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