71 research outputs found

    Water Entry of a Simple Harmonic Oscillator

    Full text link
    When a blunt body impacts an air-water interface, large hydrodynamic forces often arise, a phenomenon many of us have unfortunately experienced in a failed dive or "belly flop." Beyond assessing risk to biological divers, an understanding and methods for remediation of such slamming forces are critical to the design of numerous engineered naval and aerospace structures. Herein we systematically investigate the role of impactor elasticity on the resultant structural loads in perhaps the simplest possible scenario: the water entry of a simple harmonic oscillator. Contrary to conventional intuition, we find that "softening" the impactor does not always reduce the peak impact force, but may also increase the force as compared to a fully rigid counterpart. Through our combined experimental and theoretical investigation, we demonstrate that the transition from force reduction to force amplification is delineated by a critical "hydroelastic" factor that relates the hydrodynamic and elastic timescales of the problem

    Motor Unit Abnormalities in Dystonia musculorum Mice

    Get PDF
    Dystonia musculorum (dt) is a mouse inherited sensory neuropathy caused by mutations in the dystonin gene. While the primary pathology lies in the sensory neurons of dt mice, the overt movement disorder suggests motor neurons may also be affected. Here, we report on the contribution of motor neurons to the pathology in dt27J mice. Phenotypic dt27J mice display reduced alpha motor neuron cell number and eccentric alpha motor nuclei in the ventral horn of the lumbar L1 spinal cord region. A dramatic reduction in the total number of motor axons in the ventral root of postnatal day 15 dt27J mice was also evident. Moreover, analysis of the trigeminal nerve of the brainstem showed a 2.4 fold increase in number of degenerating neurons coupled with a decrease in motor neuron number relative to wild type. Aberrant phosphorylation of neurofilaments in the perikaryon region and axonal swellings within the pre-synaptic terminal region of motor neurons were observed. Furthermore, neuromuscular junction staining of dt27J mouse extensor digitorum longus and tibialis anterior muscle fibers showed immature endplates and a significant decrease in axon branching compared to wild type littermates. Muscle atrophy was also observed in dt27J muscle. Ultrastructure analysis revealed amyelinated motor axons in the ventral root of the spinal nerve, suggesting a possible defect in Schwann cells. Finally, behavioral analysis identified defective motor function in dt27J mice. This study reveals neuromuscular defects that likely contribute to the dt27J pathology and identifies a critical role for dystonin outside of sensory neurons

    The genomic landscape of balanced cytogenetic abnormalities associated with human congenital anomalies

    Get PDF
    Despite the clinical significance of balanced chromosomal abnormalities (BCAs), their characterization has largely been restricted to cytogenetic resolution. We explored the landscape of BCAs at nucleotide resolution in 273 subjects with a spectrum of congenital anomalies. Whole-genome sequencing revised 93% of karyotypes and demonstrated complexity that was cryptic to karyotyping in 21% of BCAs, highlighting the limitations of conventional cytogenetic approaches. At least 33.9% of BCAs resulted in gene disruption that likely contributed to the developmental phenotype, 5.2% were associated with pathogenic genomic imbalances, and 7.3% disrupted topologically associated domains (TADs) encompassing known syndromic loci. Remarkably, BCA breakpoints in eight subjects altered a single TAD encompassing MEF2C, a known driver of 5q14.3 microdeletion syndrome, resulting in decreased MEF2C expression. We propose that sequence-level resolution dramatically improves prediction of clinical outcomes for balanced rearrangements and provides insight into new pathogenic mechanisms, such as altered regulation due to changes in chromosome topology

    The impact of salamander predation on Collembola abundance

    No full text
    Volume: 102Start Page: 308End Page: 31

    Hydrodynamic irreversibility of non-Brownian suspensions in highly confined duct flow

    Full text link
    The irreversible behavior of a highly confined non-Brownian suspension of spherical particles at low Reynolds number in a Newtonian fluid is studied experimentally and numerically. In experiment, the suspension is confined in a thin rectangular channel that prevents complete particle overlap in the narrow dimension and subjected to an oscillatory pressure-driven flow. In the small cross-sectional dimension particles rapidly separate to the walls, whereas in the large dimension features reminiscent of shear-induced migration in bulk suspensions are recovered. Furthermore, as a consequence of the channel geometry and the development and application of a single-camera particle tracking method, three-dimensional particle trajectories are obtained that allow us to directly associate relative particle proximity with the observed migration. Companion simulations of a steadily flowing suspension highly confined between parallel plates are conducted using the Force Coupling Method and recover many of the salient features observed in the experiment.Comment: 17 pages, 12 figure

    Understanding earthquakes with advanced visualization

    No full text
    corecore