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Abstract 
We develop a Regional Seismic Travel Time (RSTT) model and methods to account for 

the first-order effect of the three-dimensional crust and upper mantle on travel times. The 

model parameterization is a global tessellation of nodes with a velocity profile at each 

node. Interpolation of the velocity profiles generates a 3-dimensional crust and laterally 

variable upper mantle velocity.  The upper mantle velocity profile at each node is 

represented as a linear velocity gradient, which enables travel time computation in 

approximately 1 millisecond.  This computational speed allows the model to be used in 

routine analyses in operational monitoring systems. We refine the model using a 

tomographic formulation that adjusts the average crustal velocity, mantle velocity at the 

Moho, and the mantle velocity gradient at each node. While the RSTT model is 

inherently global and our ultimate goal is to produce a model that provides accurate travel 

time predictions over the globe, our first RSTT tomography effort covers Eurasia and 

North Africa, where we have compiled a data set of approximately 600,000 Pn arrivals 

that provide path coverage over this vast area. Ten percent of the tomography data are 

randomly selected and set aside for testing purposes. Travel time residual variance for the 

validation data is reduced by 32%. Based on a geographically distributed set of validation 

events with epicenter accuracy of 5 km or better, epicenter error using 16 Pn arrivals is 

reduced by 46% from 17.3 km (ak135 model) to 9.3 km after tomography. Relative to the 

ak135 model, the median uncertainty ellipse area is reduced by 68% from 3070 km2 to 

994 km2, and the number of ellipses with area less than 1000 km2, which is the area 

allowed for onsite inspection under the Comprehensive Nuclear Test Ban Treaty, is 

increased from 0% to 51%.  
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Introduction 

 

Event location accuracy is vitally important to seismic monitoring because the location 

itself can provide insight about the event, and subsequent analysis – seismic and non-

seismic – relies on an accurate location.  Efforts to reduce magnitude thresholds in global 

monitoring systems have prompted the inclusion of regional seismic data into routine 

analysis. Regional seismic phases – broadly defined as the dominant phases at event-

station distances less than 2000 km – work towards lowering thresholds because these 

waves are recorded more reliably than the teleseismic phases that are traditionally used 

for global monitoring. Unfortunately, the current practice in monitoring systems of using 

a one-dimensional (1-D, radially symmetric) Earth model as the primary means of 

computing travel times diminishes the utility of regional data, because prediction of 

regional travel times with a 1-D model is far less accurate than prediction of teleseismic 

travel times (e.g. Kennett et al., 1995; Yang et al., 2004; Flanagan et al., 2007).  Reduced 

travel time prediction accuracy at regional distances results in degraded location accuracy 

when regional data are included (e.g. Bondár et al., 2004). If regional data are to be used 

for seismic monitoring, then travel time prediction error for regional phases must be 

reduced in order to avoid degradation of location accuracy and overall monitoring 

performance.  

 

Teleseismic P-waves work well for monitoring larger events, because explosions 

generate large, impulsive P waves. Being the first arriving wave, P-wave arrival time is 
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easily measured because the onset is not complicated by the coda of other waves. Further, 

1-D models (e.g. Jeffreys and Bullen, 1940; Herrin et al. 1968; Kennett and Engdahl, 

1991; Kennett et al., 1995) can be used to predict teleseismic P-wave travel times with 

uncertainty of approximately 1 second, an error of less than ~0.3% of the total travel 

time. Accurate travel time prediction is achievable primarily because lateral 

heterogeneity in the lower mantle, where most of the teleseismic P-wave ray path resides 

and where the reaches maximum depth, is relatively weak. Also, computational error of 

travel times in a 1-D model is negligible because model symmetry affords a quasi-

analytic solution (e.g. Buland and Chapman, 1983; Crotwell et al., 1999). Of particular 

importance to operational monitoring systems, 1-D models are easy to use.  A table of 

travel time as a function of event-station distance and event depth can be pre-computed 

for each seismic phase.  Phase-specific travel-time tables are universally applicable when 

used with a correction for station elevation and Earth ellipticity (Dziewonski and Gilbert, 

1976), providing fast and simple travel-time retrieval.   

 

The Pn phase is generally the first-arriving regional phase, making Pn the regional-

distance analog of the teleseismic P phase.  The Pn ray path resides predominantly in the 

shallow (depth<250 km) mantle.  Unfortunately, a single 1-D model simply cannot 

capture the global variability of the crust and upper mantle structure. Crustal thickness 

can vary from approximately 5 km beneath oceans to more than 70 km beneath the 

highest mountains, and crustal and upper-mantle velocity can deviate from global 

averages by more than 10%. Empirically, travel time prediction error for the Pn phase is 
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2.0 to 2.5 seconds on average (~2% of the total travel time) and error can exceed 8 

seconds in some regions (e.g. Engdahl et al., 1998; Flanagan et al., 2007).  

 

Both empirical and model-based approaches have been used to improve regional travel 

time prediction. Empirical methods (Schultz et al., 1998; Myers and Schultz, 2000) 

interpolate travel time residuals from events with known or uncommonly accurate 

locations (ground-truth) to improve prediction accuracy. For empirical methods to be 

effective, ground-truth events must be well recorded at each station of the network. This 

condition may be met by long-standing networks and for limited geographic regions, 

such as former nuclear test sites.  Empirical methods, however, do not provide global 

coverage, and travel time prediction accuracy at new monitoring stations gradually 

improves as new ground truth events are recorded.  

 

Three-dimensional (3-D) regional models show promise for improving travel time 

prediction over broad areas (e.g. Johnson and Vincent, 2002; Ritzwoller et al., 2003; 

Yang et al., 2004; Morozov et al., 2005; Flanagan et al., 2007).  Travel-time prediction 

using 3-D models typically involves pre-computing the travel time from a monitoring 

station to a volume of points, then – utilizing travel time reciprocity – the travel time 

from any point in the volume to that station can be interpolated.  Travel-time lookup 

volumes have been demonstrated locally and at regional distance (e.g. Lomax et al., 

2000; Johnson and Vincent, 2002; Flanagan et al., 2007).  Because explosion monitoring 

is concerned with near-surface events, travel-time lookups have been simplified to a map 

of surface-focus corrections relative to a 1-D base model (e.g. Ritzwoller et al., 2002; 
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Yang et al., 2004; Morozov et al., 2005).  Clearly, prediction error increases with event 

depth, and hundreds to thousands of station-phase specific correction surfaces must be 

managed in order to implement this approach. A collection of station-phase specific 

travel time lookups has been demonstrated, but a lookup approach adds considerable 

expense to the cost of maintaining a monitoring system. Model updates require re-

computation and (most expensively) re-validation of each station-phase file. Lastly, 

current models of the crust and upper mantle have been shown to produce travel-time 

predictions that are biased with respect to the teleseismic P-wave calculations (Yang et 

al., 2004), necessitating an ad hoc travel time adjustment if regional and teleseismic data 

are to be used together. 

 

We are developing a model framework and a method for calculating regional seismic 

travel times (RSTT) that can account for the first-order effects of crust and upper mantle 

heterogeneity. The model features a 3-D crust, including variable Moho depth and 

sediment thicknesses, and laterally variable mantle structure.  As we describe below, a 

simplified model parameterization in the mantle – a linear velocity gradient – lends itself 

to real-time computation of Pn travel times, which is well suited for use in operational 

monitoring systems.  

 

The RSTT model parameterization includes a global tessellation of nodes, making model 

coverage inherently global. Our ultimate plan is to produce a global model for universal 

computation of regional travel times. Achieving this goal requires development of a high-

resolution global model of the crust and upper mantle. Working towards this goal, we 
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first report on the RSTT model parameterization and the method of travel time 

calculation for Pn. Secondary regional phases will be reported on in future publications.  

Below, we demonstrate RSTT Pn tomography and improvements in Pn travel time 

prediction and location accuracy across a broad sector of the globe that includes Eurasia 

and North Africa (Figure 1). This portion of the globe was chosen because of the 

excellent Pn path coverage for events with well-constrained locations. As a next step 

towards a the global RSTT model, we are in discussions with the U.S. Geological Survey 

about extending RSTT tomography to North America (Figure 1) and subsequently 

incorporating the RSTT method into the National Earthquake Information Center (NEIC) 

processing pipeline (R. Buland, personal communication).  

 

Methods 

Model Parameterization 

We represent crust and upper mantle velocity structure using radial velocity profiles at 

geographically distributed nodes (Figure 2).  The nodes form a triangular tessellation that 

seamlessly covers the globe. Node spacing is approximately 1° for the model presented 

here, but node spacing may be adjusted as needed. Velocity interfaces are defined by the 

radial distance from the center of the Earth, which allows us to explicitly build the 

GRS80 ellipsoid (Moritz, 1980) into the model and obviate travel time corrections for 

ellipticity. 
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We adopt the velocity versus depth profile in the crust from Pasyanos et al. (2004), which 

includes model layers for water, 3 types of sediments, upper crystalline crust, middle 

crust, and lower crust (Figure 2; Table 1). The crustal layers overlay a mantle velocity 

profile that is simplified to two parameters: velocity at the Moho and a linear velocity 

gradient with depth. The model parameterization in the mantle is a simplification of true 

mantle structure, but this parameterization has advantages for real-time computation of 

Pn travel times (see below).  By interpolating model parameters from surrounding nodes 

– layer thickness, velocity, and mantle gradient – we generate a continuous model of the 

3-D crust and laterally varying upper mantle.  

 

Pn Travel Time Calculation 

Parameterization of upper mantle velocity with a linear gradient facilitates an 

approximation for Pn travel time that enables real-time computation (~1 millisecond). 

Computation of Pn travel time at near-regional distance (<700 km) commonly assumes 

that the Pn phase propagates as a head wave, with a ray-path that follows the contour of 

the Moho (e.g. Hearn, 1984).  The head wave assumption results in poor travel time 

prediction at far-regional distance (>~700 km) because the Pn ray can dive appreciably 

into the mantle due to a positive velocity gradient with depth and Earth sphericity (e.g. 

Zhao and Xie, 1993; Ritzwoller et al., 2003; Hearn et al., 2004). To more accurately 

predict Pn at far-regional distances, Zhao (1993) and Zhao and Xie (1993) employ a 

constant linear velocity gradient in the upper mantle for the whole study area.  
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The Zhao (1993) and Zhao and Xie (1993) travel time calculation is similar to the widely 

used approach of Hearn (1984), with an additional term (γ) introduced to account for 

diving rays (Figure 3). The travel-time calculation is  

 

€ 

TT = id
i=1

N
∑ is +α + β + γ     (1) 

where d and s are the distance and slowness (taken as 1/velocity below the Moho) in each 

of the i segments comprising the great-circle path between Moho pierce points near the 

event and station, α and β are the crustal travel times at the source and receiver, and γ 

(described below). 
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where v and r are the velocity and radius (from the center of the Earth to the top of the 

layer) for the M crustal layers from the event to the Moho (rM+1 is the radius of the 

Moho), and p is the spherical ray parameter.   

 

We similarly define β as: 
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where v and r are defined as above for the N crustal layers from the station to the Moho.   

 

From Zhao (1993), 
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€ 

γ =
2c m

3X
24 0V

     (4) 

where Xm is the horizontal distance traveled in the mantle, and V0 is a regional average of 

mantle velocity at the Moho. 

€ 

c = g* s+1/r, where 1/r is an Earth flattening correction 

and r is the radius at which a ray enters and exits the linear velocity gradient, g 

(Helmberger, 1973; Zhao and Xie, 1993). This approximation is valid when ch<<1, 

where h is the bottoming depth of the ray in a linear velocity gradient. 

 

We use a spatially varying mantle velocity gradient, c (Phillips et al., 2007), and we 

calculate γ by averaging c along the ray track. V0 remains an average Pn velocity over the 

whole model, which allows us to take advantage of linear tomographic inversion methods 

(see below).  Tests find that using a global average for V0 introduces negligible travel-

time error when Pn velocities range from 7.5 km/s to 8.3 km/s.   

 

The Zhao and Xie (1993) method is applicable to events in the crust, making the 

approach well suited to nuclear explosion monitoring. However, seismic location 

algorithms may explore the possibility that an event occurred in the mantle, necessitating 

a consistent method of travel-time predictions for mantle events.  For an event focus in 

the shallow mantle, 

€ 

TT =α + mantlet     (5) 

where α is the crustal travel time from the Moho to the station (as defined in (2)), and 

tmantle is the travel time in the mantle. Fundamentally, travel times for two ray paths 

comprise tmantle. One ray has endpoints at the Moho and passes through the event. The 

second ray is the subsection of the first ray that is entirely at depths below the event. 
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Adding or subtracting the component of the ray path below the event results in the ray 

leaving the event downward (+) or upward  (-). 

€ 
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1
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A derivation of (6) is provided in the Appendix, including variable definitions and 

physical depictions of some variables (Figure A1). See the Appendix for evaluation of 

travel time prediction accuracy. 

 

Tomography 

Starting Model  

The model development domain here is Eurasia and North Africa, which we define as the 

region inside the latitude range of 0° to 90° and the longitude range of -20° to 150°.  We 

set velocity profiles for nodes inside the development domain based on an a priori 

geophysical model.  The method for determining geophysical regions and compiling 

velocity information for each region is described in Pasyanos et al. (2004), and the 

starting model is an update of the Pasyanos et al. (2004) model for latitude between 0° 

and 90° and longitude between -20° and 75°.  Between longitudes 75° and 150°, we use 

an unpublished a priori model developed at Los Alamos National Laboratory (Steck et 

al., 2007). Outside of the development domain, we use a default velocity profile based on 

the ak135 model (Kennett et al., 1995) for consistency with current monitoring practice. 

Expansion beyond Eurasia and North Africa does not require a change in the model 

parameterization itself, only modification of the velocity profile at each model node.  

Figures of the starting model are presented with the tomographic model for comparison. 
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Tomographic Formulation 

The Pn travel time (Equation 1) lends itself to a linear tomographic formulation. Because 

our primary objective is to improve travel-time prediction, we avoid the use of 

parameters that would not be part of a subsequent travel-time calculation (e.g. event and 

station time terms). In matrix form, the tomographic system of equations is: 
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    (7) 

where  

t = travel time  

s  = mantle slowness below the Moho (a.k.a. Pn slowness) 

x  = Pn distance (or weight) for each model node 

c  = normalized velocity gradient, v=vo(1+cz) 

Xm = length of Pn ray path in the mantle 

Vo = average Pn velocity 

v  = velocity of a crustal layer 

k  = index on K paths (travel-time observations)  

p  = index on Q crustal layers  
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l = length of the ray path in a specified crustal layer (determined by layer thickness 

and ray parameter in Equations (2) and (3)).  

a = node-specific adjustment to the slowness of each crustal layer (crustal 

modifier).  

 

The tomographic equation solves for the model slowness below the Moho, s (a.k.a. Pn 

slowness), the square of mantle velocity gradient, c2, and a scalar adjustment to crustal 

slowness, a. The formulation in Equation 7 is similar to the approach presented in 

Phillips et al. (2007), with the significant difference that we use a scalar adjustment to the 

slowness of the crustal stack, as opposed to a time term, to account for travel-time errors 

in crustal legs of the Pn ray. The crustal legs can impart as much or more error on the 

travel time prediction as the travel time in the mantle. Because our goal is to accurately 

predict subsequent travel times using the tomographic model, it is important to fold all 

adjustments affecting travel time into the model, rather than absorb the error in a time 

term that is discarded and will not be used in subsequent travel time prediction.  

The tomographic inversion (solution to Equation 7) minimizes the misfit of squared 

travel-time residuals that are scaled by inverse arrival-time measurement uncertainty. 

Regularization of the system of equations takes the form of a Laplacian damping, which 

minimizes the curvature of the solution. Laplacian damping is applied independently to 

mantle slowness, mantle gradient, and the scalar adjustment to crustal slowness. The 

system is solved using a conjugate gradient method (Hestenes and Siefel, 1952). 
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Data Set 

We combine bulletin data from the International Seismic Centre, U.S Geological Survey 

National Earthquake Information Center, and numerous regional networks across Eurasia 

into a reconciled database.  To this database we have added tens of thousands of arrival-

time measurements made at Lawrence Livermore and Los Alamos National Laboratories, 

as well as numerous detailed studies of event location. Epicenter accuracy for each event 

in the reconciled bulletin has been assessed using the network coverage criteria of Bondár 

et al. (2004). We further add non-seismic constraints based on known explosion 

locations, ground displacement from interferometric synthetic aperture radar (InSAR), as 

well as satellite imagery of man-made seismic sources. To diminish the possibility of 

introducing travel times for phases that interact with velocity discontinuities at ~410 km 

and ~660 km, the maximum event-station distance range is set to 15°.  The minimum 

event-station distance range is determined by the post-critical refraction for a wave 

interacting with the Moho.  In practice, the minimum distance varies from tens of km in 

the ocean (thin crust) to over 200 km in Tibet (thick crust). 

Because the goal of this work is to produce a model for Pn travel time prediction for real-

time monitoring, it is important that Pn prediction error is unbiased relative to teleseismic 

P wave prediction error.  Previous efforts have achieved unbiased Pn error by using an ad 

hoc travel time correction (Yang et al., 2004). To achieve unbiased Pn error, we 

recomputed each event origin time in the tomography data using at least 10 P-wave 

arrivals.  The hypocenter is then fixed during the tomographic procedure, which forces 

Pn prediction error to be unbiased relative to teleseismic P-wave error.  
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All picks are evaluated against an uncertainty budget that accounts for event mislocation, 

a global average of ak135 prediction uncertainty, and arrival-time measurement 

uncertainty.  We map the epicenter accuracy estimates to travel-time uncertainty using 

the formulation of Myers (2001).  

         

€ 

tepiσ =
∂t
∂Δ

epiσ
2

           [8] 

where σtepi (seconds) is the standard deviation of travel time uncertainty attributable to 

epicenter uncertainty, σepi (km) is the standard deviation in epicenter error and ∂t/∂Δ is 

the phase slowness (s/km). The factor of 2 accounts for random direction of event 

mislocation and a magnitude of mislocation that is distributed Gaussian. The total 

uncertainty for a given arrival time datum is the sum of uncertainty variance for event 

location, model-based travel time uncertainty (e.g. Flanagan et al., 2007) and arrival-time 

measurement uncertainty (σ2
meas). Observations outside of the 3σdatum bounds were 

removed. 

                    

€ 

datumσ = tepi
2σ + model

2σ + meas
2σ            [9] 

 

In addition to data culling based on the datum-specific uncertainty budget, we also cull 

data based on a comparison of neighboring observations.  This “local” outlier removal 

uses a kriging algorithm similar to the method outlined in Schultz et al. (1998). We 

gather all Pn residuals for a station and compute a geographic residual surface.  The 

advantage of using the kriging method for interpolation is that we can also compute the 

point-specific uncertainty for residual prediction.  Each residual is examined in the 
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context of the station-specific residual and uncertainty surfaces, and only data in the 2σ 

bounds of the residual surface are retained. We find that removal of local outliers better 

identifies residuals that are due to measurement uncertainty than outlier removal based on 

the distribution of all residuals. 

Following removal of local outliers, we produce summary rays for each station.  Arrival-

time observations are again grouped by station, and residuals are plotted at the epicenter 

of the event. For each event, we count the number of neighboring events within 0.5° (the 

nominal bin size), and we order events by the count.  Starting with the event having the 

highest count, we average residuals for all events within 0.5°, to produce a summary-ray 

travel time and an uncertainty estimate.  Events comprising the summary ray are then 

discarded from the event list and the process is repeated on the event having the next 

highest count.  This process is repeated until all events for that station are exhausted. 

From the ~600,000 Pn rays we produce ~162,000 summary rays.  The dramatic reduction 

reflects paths that are repeatedly sampled in areas with high seismicity. Reduction of the 

data set by summary rays not only reduces the number of data (and therefore reduces the 

computational expense of the tomography) by approximately 70%, but the average datum 

uncertainty is reduced from 1.73 seconds to 1.28 seconds.  The use of summary rays also 

mitigates sampling redundancy, which if left unaccounted, biases tomographic model 

adjustments to paths that are repeatedly sampled.  

Data Coverage and Model Resolution  

Figure 4 shows the node hit count for Pn rays throughout Eurasia, as well as the resulting 

tomographic “checkerboard” test for mantle-Moho velocity.  The hit count is high 
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(~10,000) throughout the Tethys collision belt (a roughly east-west band from the 

Pyrenees through the Himalayas). Node hit count to the north of the Tethys collision is 

also good, with regional bulletins and peaceful nuclear explosions (PNEs) in the Former 

Soviet Union (Sultanov et al., 1999) providing data coverage. South of the Tethys 

collision hit count is poorer. Some regions are not sampled by any Pn ray (i.e. North 

Africa), and the tomographic model is unaltered from the starting model in these regions.  

Checkerboard resolution tests show that the model is well resolved in regions having a 

higher hit count.  Regions with high hit count tend to have more crossing paths and a 

better mix of long and short paths, which are needed to resolve mantle velocity at the 

Moho and the velocity gradient. This result highlights the success of the anomaly 

recovery in regions of good data coverage and the importance of the starting model in 

regions with poorer data coverage. 

Results 

Figure 5 shows maps of the tomographic model.  The general tectonic features that are 

present in the starting model are also seen in the tomographic model (Figure 5a). Low-

velocity anomalies in the Mediterranean region, Red Sea Rift, and Iranian Plateau remain 

in the RSTT model, but the velocities are even lower. While the starting model correctly 

identifies the average velocity over broad regions, the RSTT model shows that structure 

varies appreciably within these tectonic provinces.  In the Scandinavian region, mantle 

velocity at the Moho increases to values in excess of 8.3 km/s.  The Atlantic ridge is 

better defined by a sinuous low velocity anomaly after tomography.  Moving east, the 

starting and RSTT models are in broad agreement across the Siberian Plateau, with some 
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small areas (e.g. immediately east of the Ural Mts.) of increased velocity.  The largest 

difference between the starting and RSTT models is along the Pacific subduction zone.  

The starting model does not include low velocity in the mantle wedge above the 

subducted oceanic slabs, whereas the slowest mantle P-wave velocities in the RSTT 

model are above these subducted slabs.  The starting model includes low mantle 

velocities throughout China, whereas the RSTT model suggests that mantle velocity in 

eastern China is even slower than the starting model, and velocity in western China – 

including the Tibetan Plateau – is close to the global average. The Hindu Kush and the 

Tien Shan Mountains are clearly resolved to be localized areas of low mantle velocity.  

Mantle velocity gradient tends to be highest in convergence zones.  The tomography map 

of mantle gradient (Figure 5b) shows a strong gradient along the Tethys convergence 

zone.  Similarly, the mantle velocity gradient is high under the Pacific subduction zones, 

where the slow velocities of the wedge transition to the fast slab. True mantle structure in 

the convergence zones is clearly not as simple as the linear gradient that we image in this 

study, but the results presented here are consistent with downgoing (cold) material at the 

convergence zones.  The linear gradient does, however, capture the effect of the structure 

on travel time to first order.  The starting model has broad regions of strong mantle 

gradient across northern Eurasia, which is largely unchanged in the RSTT model. Change 

in the crustal modifier (a in Equation 7) from the starting model is small, despite 

relatively light damping on the a parameters. 
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Improvement in travel time prediction. 

We leave out 10% of the tomographic data for use in non-circular validation tests. The 

validation data provides sampling across Eurasia, so residual summary statistics are a 

good measure of expected model performance in monitoring systems.  Figure 6 shows 

residual distributions for ak135, the starting model, and the RSTT model.  Recalling that 

origin times are determined by minimizing teleseismic P-wave residuals relative to ak135 

predictions, it is perhaps surprising that Pn error for the ak135 model has a median value 

of 0.31 seconds.  Median Pn error for the starting model is also 0.31 seconds.  For the 

RSTT model, median Pn error is reduced to 0.16 seconds, a 48% reduction from the 

ak135 model. The Pn residual standard deviations (mean removed) relative to the ak135, 

starting model, and RSTT model are 1.99 sec., 1.99 sec., and 1.58 sec., respectively.  

We use an interquartile measurement to compute a robust estimate of standard error for 

Pn prediction (Figure 7). Figure 7 includes the ak135 error vs. distance curve, as well as 

the curve for the starting and RSTT models. The uncertainty vs. distance curve for the 

starting model and ak135 are similar at near-regional distance. ak135 uncertainty 

increases more rapidly with distance than does starting model uncertainty, and the 

starting model uncertainty is ~0.2 seconds lower than ak135 at far-regional distance.  The 

RSTT model is significantly improved over both ak135 and the starting model, with a 

relatively consistent error vs. distance of approximately 1.25 seconds. The RSTT model 

reduces error by 0.5 to 1.0 seconds relative to ak135.  We note that a nominal one-second 

measurement (pick) error variance was subtracted from the measured residual variance 

before plotting (see Flanagan et al., 2007). For instance, the plotted value of 1.25 seconds 

(variance of 1.56 s2) was derived from an observed residual error of 1.6 seconds. 
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Location Tests 

Figure 8 is a map of the events used in relocation tests. None of these events was used in 

the tomography and each of these events is either an explosion with an accurate location, 

or an earthquake that is surrounded by a local network (i.e.. GT5 criteria of Bondár et al., 

2004). These events are well distributed geographically, providing a representative 

sampling of location performance across the modeling region. Each event is located using 

Pn arrival times only.  We use the LocOO code (Ballard, 2002), which is based on the 

single-event location method outlined in Jordan and Sverdrup (1981). Uncertainty 

ellipses were computed using the method of Evernden (1969), where “coverage” ellipse 

axes are scaled by a priori (input) model and pick uncertainties. For travel-time 

prediction uncertainties we use the distance-dependant curves in Figure 7, and either an 

analyst estimate of pick uncertainty or a nominal 1-second uncertainty.  Because event 

depth is poorly constrained with a Pn data set, event depths are fixed. These events were 

selected partially because a large number of Pn arrival times are available for each event.  

We relocated the events using 4, 8, 16, and 32 Pn arrivals.  Data selection was random 

and we created 10 realizations of each case (number of Pn arrivals).  Results presented 

below are an average of the 10 realizations. 

Table 2 summarizes epicenter error when the ak135, starting, and RSTT models are used 

for travel-time prediction in the location algorithm. The results are also summarized in 

the Figure 9a.  Figure 9a shows that median epicenter error for the RSTT model is 

significantly lower than for ak135 and the starting model, regardless of the number of Pn 

arrivals.  Further, the RSTT model reaches a relatively constant level of epicenter error at 
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~9 km with only 8 Pn arrivals, whereas a stable level of epicenter error at ~17 km for 

ak135 and the starting model is reached after 16 Pn arrivals are used.  

Table 3 summarizes ellipse area for ak135, the starting model, and the RSTT model, 

when 4, 8, 16, and 32 Pn arrivals are used. The primary difference between the results for 

the ak135 and starting models is that there are fewer outliers with enormous ellipse area 

for the starting model than for ak135 (i.e. the “tail” of the distribution is shorter).  

Ellipses for the RSTT model are consistently smaller than for the other two models. 

Ellipse sizes (case with 16 Pn arrivals) are also summarized in Figure 9b,c. Figure 9b is a 

semilog plot of median ellipse area vs. the number of Pn phases, showing that ellipses for 

the RSTT model are significantly smaller than for the ak135 or the starting model. Figure 

9c shows that the percentage of uncertainty ellipses with area less than 1000 km2 is far 

greater for locations determined with the RSTT model. The 1000 km2 metric is taken 

from the Comprehensive Nuclear Test Ban Treaty (CTBT), which allows for an on-site 

inspection search area of 1000 km2. The results show that with 4 to 8 Pn arrivals, none of 

the uncertainty ellipses are expected to be less than 1000 km2, when either the ak135 

model or the starting model are used. Even using 32 Pn arrivals results in only ~23% of 

uncertainty ellipses with area less than 1000 km2, when ak135 or the starting model are 

used.  Using the RSTT model, it is possible to achieve the 1000 km2 goal with only 4 Pn 

arrivals, although the network configuration must be ideal. With 16 Pn arrivals 

approximately one-half of the events meet the 1000 km2 goal, and with 32 Pn arrivals 

~88% of ellipses meet the 1000 km2 goal. 

Figure 10a shows that coverage ellipses are representative of true location error when the 

assessments of model error (Figure 7) are input to the location algorithm. The expected 
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number of ground-truth events occurs inside the ellipses of varying confidence level.  

Figure 10b shows the reduction in error ellipse size for the case with 16 Pn arrivals.  

Combining Pn and P Data 

While low-magnitude events are expected to record more reliably at regional distance 

than at teleseismic distance, a small number of teleseismic (P) recordings may be 

expected even for events between magnitude 3 and 4. For a small event it is important to 

include all available data to achieve a network with the smallest possible gap in event-

station azimuthal coverage. Therefore, we test epicenter accuracy when both Pn and P 

data are used to determine the location.  In these tests ak135 is used for P-wave travel 

time calculations, and ak135, the starting model, and the RSTT model are each tested for 

Pn travel time calculations.   

For each of the nuclear explosions in the test data set, we use all available Pn data. We 

then add P-wave arrivals into the location data set. For each test case the number of P 

arrivals is varied from 50% to 400% of the number of Pn arrivals, or until P-wave data 

are exhausted. In each test case we present the median epicenter error for 10 random 

realizations of the P-wave data set. Figure 11 shows that when the RSTT model is used 

for Pn travel time predictions and the ak135 model is used for P predictions, epicenter 

estimates are measurably more accurate than cases where either ak135 or the starting 

model is used for Pn travel time predictions.  In most cases epicenter accuracy tends to 

converge as more P data are used, because the location solution is dominated by ak135 

predictions of P-wave travel times. The exceptions are the 2006 Korean nuclear test and 

the 1990 nuclear test in the Former Soviet Union event. For the Korean event, epicenter 
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error becomes exceedingly small for the RSTT model (~1 km), and for the Soviet event, 

regional travel time errors are large enough that the locations are significantly biased 

even when large numbers of teleseismic data are used. In all cases in which Pn data 

outnumber or are equal in number to teleseismic data, epicenter accuracy for the RSTT 

model is equal to or better than epicenter accuracy when the ak135 model is used for Pn 

travel time prediction. 

Conclusions 

Reduction of seismic monitoring thresholds requires the use of regional seismic data to 

constrain event locations.  One-dimensional (radially symmetric) models that are almost 

universally used in real-time monitoring cannot account for the geologic complexity of 

the crust and upper mantle. We develop a Regional Seismic Travel Time (RSTT) model 

and method to account for the first-order effects of crust and upper mantle structure on 

regional travel times. The model parameterization is a global tessellation with node 

spacing of approximately 1°, with a velocity vs. depth profile at each node.  Layer depths 

and velocities are interpolated to generate a 3-D crustal model, overlaying laterally 

varying velocity in the upper mantle. Velocity profiles in the mantle include a velocity at 

the Moho and a linear gradient as a function of depth.  The linear gradient 

parameterization allows application of an analytical approximation that accounts for a Pn 

ray that dives below the Moho into a linear velocity gradient (Zhao and Xie, 1993; 

Phillips et al., 2007). Due to this approximation, Pn travel times can be computed in 

approximately 1 millisecond, which highly desirable for operational monitoring systems. 
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We adapt tomographic methods to the model RSTT parameterization and use a data set of 

approximately 600,000 Pn arrivals to improve travel time prediction accuracy across 

Eurasia and North Africa.  Tests show that RSTT Pn travel time prediction accuracy is 

improved to approximately that of the teleseismic P-wave, which is the benchmark phase 

in seismic monitoring. We confirm that the reduction in travel time prediction error also 

improves location accuracy (Figure 9).  Using 16 Pn arrivals, epicenter error is improved 

from a median value of 17.3 km (ak135) to 9.3 km with the RSTT model. The area of 

epicenter uncertainty ellipses is reduced from a median value of 3070 km2 (ak135) to 994 

km2 (Figure 10).  Importantly, in tests using 16 Pn arrivals, 51% of the ellipse areas are 

smaller than the 1000 km2 allowed under the CTBT for on-site inspection, as opposed to 

0% of ellipse with area less than 1000 km2 for the ak135 model. Of particular note, 

Figure 9c shows that few epicenter uncertainty ellipses are expected to meet the 1000 

km2 goal when either the ak135 model or the starting model is used. Using the RSTT 

model, it is possible to achieve the 1000 km2 goal with only 4 Pn arrivals, although the 

network configuration must be ideal. Using 32 Pn arrivals ~88% of ellipses meet the 

1000 km2 goal. 

 

The RSTT model brings the Pn travel-time prediction accuracy down to the level of 

prediction accuracy for teleseismic P, which is the primary phase used in global 

monitoring.  As a result, the RSTT approach enables the use of regional Pn arrival times 

in seismic monitoring systems without degrading location performance. RSTT is 

presented as a first step beyond the use of a 1-D base model in operational monitoring 

systems. While the base model provides the primary travel time calculation, travel time 
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corrections that are based on fully 3-D models or empirical travel times can and should 

be used to further improve prediction accuracy. While the RSTT model is global in 

extent, the crucial tomographic optimization is currently limited to Eurasia and North 

Africa; however, we plan to apply RSTT tomography to North America and eventually to 

the globe.  Last, we have extended RSTT travel-time calculation to Sn, Pg, and Lg 

phases, and we will report on the travel time calculation and model development for 

computation of these later phases in a future publication.  

 

Data and Resources 

Most of the arrival-time measurements used in this study can be obtained from the 

International Seismic Centre (ISC).  Bulletin arrival times include the EDR catalog 

(http://earthquake.usgs.gov/regional/neic), the ISC catalog (http://www.isc.ac.uk), the 

REB catalog prior to 2002 (http://www.pidc.org), the EHB catalog 

(ftp://ciei.colorado.edu/pub/user/engdahl/EHB), and the FINNE 

(http://www.seismo.helsinki.fi/bul/index.html), all of which are publicly available. 

Additional arrival-time measurements were made by researchers at the Air Force 

Technical Applications Center, Lawrence Livermore National Laboratory, and Los 

Alamos National Laboratory; these measurements are not presently available to the 

public. Measurements made at LLNL and LANL were made using waveform data 

obtained through the Incorporated Research Institutes in Seismology (IRIS) Data 

Management Center (DMC) at www.iris.edu, the U.S. National Data Center (USNDC) at 

www.tt.aftac.gov, GEOSCOPE at geoscope.ipgp.jussieu.fr, IIEES at www.iiees.ac.ir, 

GEOFON at geofon.gfz-potsdam.de, and MEDNET at mednet.rm.ingv.it.  Other data 
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were obtained directly from networks in Azerbaijan, Georgia, Israel, Jordan, Kazakhstan, 

Kuwait, Oman, Saudi Arabia, Turkey, and United Arab Emirates.  Plots were made using 

the Generic Mapping Tools (GMT) version 4.2.0 (Wessel and Smith, 1998; 

www.soest.hawaii.edu/gmt). 
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Appendix: Calculating travel times for mantle events 

Zhao and Xie (1993) and Zhao (1993) provide a derivation for Pn travel time 

approximation in equations (1) and (4) for events in the crust.  We extend the 

approximation for events originating in the mantle.  Figure A1 shows that extending the 

Zhao and Xie (1993) approximation to an event in the mantle involves manipulation of 

two constituent ray paths.  The first constituent ray starts at the Moho and travels 

downward, passing through the event, and ending at the recording station (whole path 

ray).  The travel time for the portion of the whole path ray in the mantle (whole mantle 

ray) is calculated directly from Zhao and Xie (1993).  The second constituent ray is the 

portion of the whole-path ray that is entirely below the event (sub-event path). Using the 

travel times for the whole path and the sub-event ray, we can compute the travel time for 

a mantle-focus event. The difficulty lies in specifying the whole path and sub-event rays. 

 

Following Zhao and Xie (1993) and Zhao (1993) the travel time for the whole mantle ray 

is 

 

€ 

twm = tm + γm = tm −
cm
2 xm

3

24Vm

,  (A1) 

where t is travel time, γ is the gradient portion of the travel time (negative), c is the 

normalized gradient, x is the horizontal distance, V is velocity, the m subscript signifies 

evaluation at or along the Moho, and the subscript wm is signifies whole mantle. 

 

The travel time for the sub-event ray is 
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€ 

tse = te + γ e = te −
ce
2xe

3

24Ve

= te −
ce
2xe

3

24(Vm + gmz)
,  (A2) 

where the subscript e signifies evaluation at or along the depth of the event, and the 

subscript se signifies sub-event. 

 

From the geometry in Figure A1, the travel time from the event to the Moho pierce point 

beneath the station (the desired quantity) can be computed as a combination of twm and tse.   

 

€ 

tmantle = twm ± tse( ) /2 ,  (A3) 

where ± depends on whether the ray leaves the event upwards (-) or downwards (+). 

 

Determining the whole mantle ray 

In order to use A3 we must find the whole mantle ray. We first define the horizontal 

distance traveled by the whole mantle ray, xm.  In a linear velocity gradient, the bottoming 

depth of the ray, h, and xm are uniquely related. From Figure A1, the distance measured 

along the Moho from the event to the point where the ray pierces the Moho, d, is, 

 

€ 

d = xm ±
rmxe
rm − z( )

 

 
 

 

 
 /2, (A4) 

where xe is the horizontal distance of the sub-event path. The ± indicates when the ray is 

up-going (-) or down-going (+), rm is the radius from the center Earth to the Moho at the 

event, and z is the depth of the event below the Moho. Using Equation A3 from Zhao 

(1993) 

 

€ 

xm = 2 /cm( ) 1+ cmh( )2 −1 (A5) 
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€ 

xe = 2 /ce( ) 1+ ce h − z( )( )2 −1, (A6) 

We determine h by substituting A5 and A6 into A4 (simplifying r = rm/(rm – z)), and 

minimizing the difference between the distance (d) computed by A1. In practice, we 

minimize log10 of the squared difference using Brent’s method: 

 

€ 

log 1+ cmh( )2 −1 − r cm
ce

1+ ce h − z( )( )2 −1 − dcm
 

 
 

 

 
 

2 

 
 
 

 

 
 
  (up-going), (A7) 

 

€ 

log 1+ cmh( )2 −1 + r cm
ce

1+ ce h − z( )( )2 −1 − dcm
 

 
 

 

 
 

2 

 
 
 

 

 
 
  (down-going), (A8) 

and use the misfit to determine whether the ray is up-going or down-going. The values 

for xm and xe, which depend on the Moho pierce point, are recalculated using an updated 

ray parameter for the turning-point depth (h), and the procedure is iterated to 

convergence. 

 

Computing normalized gradient and travel time 

Once the values of xm and xe are determined, we can be substituted into A1 and A2 to 

compute the travel time for the whole-mantle ray and the sub-event ray, and we can use 

A3 to compute the mantle portion of the travel time for the event of interest.  The 

following clarifies details of the calculation. The head-wave travel time along the Moho 

is simply a sum of the slowness multiplied by the incremental distances as in equation 

(1), with an additional component for the Moho travel time beyond the source-receiver 

distance (tx) (see Figure A1). 

 

€ 

tx =
xm − d
Vm

  (A9) 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A head-wave travel time along the event depth path is determined using the path-

averaged velocity at depth z. 

 

€ 

te =
xe

Vm + gmz
  (A10) 

 

The normalized gradient c in A1 and A2 vary slightly depending on whether the purpose 

of the calculation is to find the turning point depth h or the gradient portions of the travel 

times. When determining h in equations A4-A8, the normalized gradient uses the path-

averaged velocity. 

 

€ 

cm =
gm
Vm

+
1
rm
  (A11) 

 

€ 

ce =
gm
Ve

+
1
re

=
gm

Vm + gmz
+
1
re
  (A12) 

 

When calculating the gradient portions of the travel times in A1-A3 and A11-A12, we 

substitute a regional average of the Moho velocity V0 for Vm, in order to keep travel times 

consistent with crustal events and the tomography. 

 

€ 

cm =
gm
V0

+
1
rm
  (A13) 

 

€ 

ce =
gm

V0 + gmz
+
1
re
  (A14) 

 

The full travel time for a mantle event becomes: 
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€ 

tmantle =
1
2

dmismi
i=1

N

∑ + tx −
cm
2 xm

3

24V0

 

 
 

 

 
 ± te −

ce
2xe

3

24(V0 + gmz)
 

 
 

 

 
 

 

 
  

 

 
  ,  (A15) 

 

which can also be separated into head-wave and gradient components: 

 

€ 

thead =
1
2

dmismi
i=1

N

∑ + tx ± te
 

 
 

 

 
 =
1
2

dmismi
i=1

N

∑ +
xm − d
Vm

±
xe

Vm + gmz
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 (A16) 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1
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2 xm

3

V0
±
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2xe

3

V0 + gmz
 

 
 

 

 
   (A17) 

 

 

Figure A1: Geometry and variable definition extending the Zhao and Xie 
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(1993) formulation to events in the shallow mantle. The red star is the 

event location and the triangle is the station location. The theoretical 

projected portion of the ray path is shown as a muted dashed red line. Note 

that horizontal distances are evaluated in a flat earth, and Appendix 

equations correct for Earth sphericity. 

 

 

Validity of the Zhao and Xie (1993) approximation 

 

Zhao (1993) assumes that the product of the normalized mantle velocity gradient, c, and 

the bottoming depth of the ray traveling in the linear velocity gradient, h, is much less 

than 1 (i.e. ch<<1).  We test the accuracy of the calculation using a model with the ak135 

crust and Moho velocity (Kennett et al., 1995), overlain by a mantle with a linear velocity 

gradient.  Test cases include gradients of 0.000, 0.001, 0.003, and 0.005 km/s/km (Figure 

A2). As expected the error approximately follows the contour of ch. The goal of a 

computational error of less than 0.2 seconds is approximately met when ch <0.12.  We 

note that tomographic procedures will force the travel time to agree with observations, 

and therefore meet the goal of this project, which is improved travel time predictions for 

monitoring. We caution that ch should be carefully assessed before model velocities are 

interpreted.  
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Figure A2: Travel time differences between formulation above and the 
TauP toolkit (Crotwell et al., 1999) for varying mantle gradient values. 
The ak135 crust and velocity at the Moho were used in each model.  Only 
the gradient is varied. The solid lines are contours of equal ch values (see 
text). Dotted contour lines are of equal residual value, with an interval of 
0.1 s. 
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Tables: 
 
 
Table 1.  Definition of model entities that are used to construct depth profiles at 

each model node. Depths define the bottom of the layer.  The top of a layer is 
implicitly the bottom of the overlaying layer.  Mantle gradient is unique in 
that it is not a layer.  

Entity number Model entity Representation Parameter 

1 Water Layer Velocity 

2 Sediment 1 Layer Velocity 

3 Sediment 2 Layer Velocity 

4 Sediment 3 Layer Velocity 

5 Upper Crust Layer Velocity 

6 Middle Crust Layer Velocity 

7  (Moho ⇓) Lower Crust Layer Velocity 

8 Mantle @ Moho Velocity 

9 Mantle Gradient Half Space Gradient 

 
  
 
Table 2. Epicenter error summary statistics. 
 
  Median (km) 90th percentile (km) 
Number of Pn data 4 8 16 32 4 8 16 32 
ak135 31.6 22.5 17.3 15.6 141.7 199.2 89.2 53.4 
Starting Model 21.7 18.1 16.8 15.0 76.0 55.2 33.3 32.8 
Tomography (RSTT) Model 14.4   9.3   9.3   8.2 40.4 23.3 20.9 21.1 
Note: results for locations with station azimuthal gap less than 180°. 
 
 
Table 3. Epicenter uncertainty ellipse summary statistics 
  Median (km2) 90th percentile (km2) 
Number of Pn data  4 8 16 32 4 8 16 32 
ak135 19,042 7,502 3,070 1,423 218,310 20,731 6,790 3,730 
Starting Model 13,900 5,704 2,738 1,432   40,947 14,129 5,114 3,962 
Tomography (RSTT) 
Model 

  3,297 1,765    994    478     4,843   2,549 1,490 1,018 

Note: results for locations with station azimuthal gap less than 180°. 
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Figures 
 
 

 
Figure 1. Phased approach for applying RSTT tomography, with the end goal of 
producing a global model for the universal prediction of regional phases.
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Figure 2. Global model parameterization.  a) An example tessellation with approximately 
5° grid spacing. The inset shows the 1° used in this study. Color indicates Moho depth of 
the starting model. b) An example velocity/depth profile as defined at each node.  The 
mantle portion of the profile is specified by the velocity at the crust/mantle interface and 
a linear gradient. 
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Figure 3. Cross section extracted from the laterally variable model. This example shows 
crustal layers (grey), and how crustal layers can pinch out. The variable-depth Moho is 
also shown.   The first, second, third, and fourth terms of the Pn travel-time calculation 
[Eqn 1] are colored blue, red, green and cyan, respectively. 
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Figure 4. a) Node hit count for Pn rays. Nodes hit count exceeds 10,000 throughout the 
Tethys convergence zone and Scandinavia.  Hit count varies across northern Eurasia from 
tens of hits down to a few.  North Africa and some ocean areas are devoid of data.   b) 
Tomographic checkerboard test for the mantle velocity gradient (~1000 km squares). c) 
Tomographic checkerboard test for the mantle velocity at the Moho (~500 km squares).   
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Figure 5. Comparison of starting and RSTTs. a) Velocity below the Moho. b) Mantle 
gradient (km/s/km). c) Tomographic crustal modifier (a in Equation 7). 
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Figure 6. Travel-time residual histograms for a validation data set (not used in the 
tomography).  The model is listed above each histogram, and summary statistics are 
provided in the upper left.  
 
 

 
Figure 7. Travel-time error as a function of distance. The median residual in 1° distance 
bins is plotted for each model.  
 



45   

                                         

 
Figure 8. Validation data set used for location.  The grey stars are GT5 epicenters, and 
the black stars are explosions with accurate epicenters. 
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Figure 9. (a) Epicenter error, (b) semilog plot of median ellipse area,  and (c) percentage 
of coverage ellipses with area < 1000 km2. In (a), (b), and (c) parameters are plotted vs. 
number of Pn data used in the location. Starting model and ak135 overlap in (c).  
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Figure 10. (a) Epicenter ellipse validation and (b) reduction in ellipse area for locations 
constrained with 16 Pn data. a) Histograms show the number of ground-truth epicenters 
occurring within ellipses of varying confidence level. The expectation is that 10% of 
events will fall within the 10% confidence ellipse, 20% within the 20% confidence 
ellipse, etc.  The red line shows the expected trend of the histogram if ellipses accurately 
depict epicenter error.  b) Histograms show the occurrences of ellipse area for the ak135 
model, starting model, and RSTT. 
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Figure 11. Epicenter accuracy with mixed Pn/P data sets.  All Pn arrivals are used. Each 
plot shows the influence of adding (teleseismic) P arrivals and using the ak135 model to 
predict P travel times. The abscissa is computed as the number of P arrivals divided by 
the number of Pn arrivals times 100. Median epicenter error for 10 realizations is plotted. 
 
 
 


