286 research outputs found

    Long Distance Continuous-Variable Quantum Key Distribution with a Gaussian Modulation

    Full text link
    We designed high-efficiency error correcting codes allowing to extract an errorless secret key in a continuous-variable quantum key distribution protocol using a Gaussian modulation of coherent states and a homodyne detection. These codes are available for a wide range of signal-to-noise ratios on an AWGN channel with a binary modulation and can be combined with a multidimensional reconciliation method proven secure against arbitrary collective attacks. This improved reconciliation procedure considerably extends the secure range of a continuous-variable quantum key distribution with a Gaussian modulation, giving a secret key rate of about 10^{-3} bit per pulse at a distance of 120 km for reasonable physical parameters.Comment: 8 pages, 5 figures, 5 table

    Statistical Mechanics Analysis of LDPC Coding in MIMO Gaussian Channels

    Get PDF
    Using analytical methods of statistical mechanics, we analyse the typical behaviour of a multiple-input multiple-output (MIMO) Gaussian channel with binary inputs under LDPC network coding and joint decoding. The saddle point equations for the replica symmetric solution are found in particular realizations of this channel, including a small and large number of transmitters and receivers. In particular, we examine the cases of a single transmitter, a single receiver and the symmetric and asymmetric interference channels. Both dynamical and thermodynamical transitions from the ferromagnetic solution of perfect decoding to a non-ferromagnetic solution are identified for the cases considered, marking the practical and theoretical limits of the system under the current coding scheme. Numerical results are provided, showing the typical level of improvement/deterioration achieved with respect to the single transmitter/receiver result, for the various cases.Comment: 25 pages, 7 figure

    On encoding symbol degrees of array BP-XOR codes

    Get PDF
    Low density parity check (LDPC) codes, LT codes and digital fountain techniques have received significant attention from both academics and industry in the past few years. By employing the underlying ideas of efficient Belief Propagation (BP) decoding process (also called iterative message passing decoding process) on binary erasure channels (BEC) in LDPC codes, Wang has recently introduced the concept of array BP-XOR codes and showed the necessary and sufficient conditions for MDS [k + 2,k] and [n,2] array BP-XOR codes. In this paper, we analyze the encoding symbol degree requirements for array BP-XOR codes and present new necessary conditions for array BP-XOR codes. These new necessary conditions are used as a guideline for constructing several array BP-XOR codes and for presenting a complete characterization (necessary and sufficient conditions) of degree two array BP-XOR codes and for designing new edge-colored graphs. Meanwhile, these new necessary conditions are used to show that the codes by Feng, Deng, Bao, and Shen in IEEE Transactions on Computers are incorrect

    Oncolysis of malignant human melanoma tumors by Coxsackieviruses A13, A15 and A18

    Get PDF
    Many RNA viruses are displaying great promise in the field of oncolytic virotherapy. Previously, we reported that the picornavirus Coxsackievirus A21 (CVA21) possessed potent oncolytic activity against cultured malignant melanoma cells and melanoma xenografts in mice. In the present study, we demonstrate that three additional Group A Coxsackieviruses; Coxsackievirus A13 (CVA13), Coxsackievirus A15 (CVA15) and Coxsackievirus A18 (CVA18), also have similar oncolytic activity against malignant melanoma. Each of the viruses grew quickly to high titers in cancer cells expressing ICAM-1 and intratumoral injection of preformed subcutaneous SK-Mel-28 xenografts in mice with CVA13, CVA15 and CVA18 resulted in significant tumor volume reduction

    Forced Solid-State Interactions for the Selective “Turn-On” Fluorescence Sensing of Aluminum Ions in Water Using a Sensory Polymer Substrate

    Get PDF
    Selective and sensitive solid sensory substrates for detecting Al(III) in pure water are reported. The material is a flexible polymer film that can be handled and exhibits gel behavior and membrane performance. The film features a chemically anchored salicylaldehyde benzoylhydrazone derivative as an aluminum ion fluorescence sensor. A novel procedure for measuring Al(III) at the ppb level using a single solution drop in 20 min was developed. In this procedure, a drop was allowed to enter the hydrophilic material for 15 min before a 5 min drying period. The process forced the Al(III) to interact with the sensory motifs within the membrane before measuring the fluorescence of the system. The limit of detection of Al(III) was 22 ppm. Furthermore, a water-soluble sensory polymer containing the same sensory motifs was developed with a limit of detection of Al(III) of 1.5 ppb, which was significantly lower than the Environmental Protection Agency recommendations for drinking water.Spanish Ministerio de Economía y Competitividad-Feder (MAT2011-22544) and by the Consejería de Educación - Junta de Castilla y León (BU232U13)
    • 

    corecore