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Abstract—Low density parity check (LDPC) codes, LT codes
and digital fountain techniques have received significant attention
from both academics and industry in the past few years. By
employing the underlying ideas of efficient Belief Propagation
(BP) decoding process (also called iterative message passing
decoding process) on binary erasure channels (BEC) in LDPC
codes, Wang has recently introduced the concept of array BP-
XOR codes and showed the necessary and sufficient conditions
for MDS [k + 2, k] and [n, 2] array BP-XOR codes. In this
paper, we analyze the encoding symbol degree requirements for
array BP-XOR codes and present new necessary conditions for
array BP-XOR codes. These new necessary conditions are used
as a guideline for constructing several array BP-XOR codes
and for presenting a complete characterization (necessary and
sufficient conditions) of degree two array BP-XOR codes and
for designing new edge-colored graphs. Meanwhile, these new
necessary conditions are used to show that the codes by Feng,
Deng, Bao, and Shen in IEEE Transactions on Computers are
incorrect.

I. INTRODUCTION

Low-density parity-check (LDPC) codes were invented by
Gallager [11] in his PhD thesis. After being invented, they
were largely forgotten and have been reinvented multiple times
for the next 30 years (see, e.g., [30], [31], [1], [18], [19],
[16], [29], [25], [21], [22], [20], [2]). For example, based on
expander graph results by Lubotzky, Phillips and Sarnak [15]
and Margulis [24], Sipser and Spielman [30], Spielman [31],
Alon et al. [1], and others introduced asymptotically linear
LDPC error-correcting and erasure codes. Luby et al. [18],
[19] introduced LDPC Tornado codes, Luby [16] introduced
LT-code, and Shokrollahi [29] introduced Raptor codes.

Array codes have been studied extensively for burst error
correction in communication systems and storage systems (see,
e.g., [3], [4], [5], [6], [8], [14], [36], [37]). Array codes are
linear codes where information and parity data are placed in
a two dimensional matrix array.

Formally, the array code is defined as follows: For fixed
numbers n, k, t, l, and b where n > max{k, t}, let M =
{0, 1}l be the message symbol set and v1, · · · , vbk be vari-
ables taking values from M , which are called information
symbols. A t-erasure tolerating [n, k] array code is a b × n
matrix C = [ai,j ]1≤i≤b,1≤j≤n such that each encoding symbol
ai,j ∈ {0, 1}l is the exclusive-or (XOR) of one or more
information symbols from v1, · · · , vbk and v1, · · · , vbk could
be recovered from any n − t columns of the matrix. For an

encoding symbol ai,j = vi1⊕· · ·⊕viσ , we call vij (1 ≤ j ≤ σ)
a neighbor of ai,j and call σ the degree of ai,j . A t-erasure
tolerating [n, k] b × n array code C is said to be maximum
distance separable (MDS) if k = n− t. The [n, k] array code
C over the alphabet M can be considered as a linear code over
the extension alphabet M b of length n or a linear code over
the alphabet M of length bn.

The Belief Propagation decoding process (also called mes-
sage passing iterative decoding) for binary symmetric channels
(BSC) is present in Gallager [11] and is also used in artificial
intelligence community [27]. The BP decoding process for
binary erasure channels (BEC) is described as follows:

(Cf. [16], [17]) If there is at least one encoding
symbol that has exactly one neighbor then the
neighbor can be recovered immediately. The value
of the recovered information symbol is XORed
into any remaining encoding symbols that have this
information symbol as a neighbor. The recovered
information symbol is removed as a neighbor of
these encoding symbols and the degree of each such
encoding symbol is decreased by one to reflect this
removal.

Wang [32], [33], [35] recently studied array codes that could
be be decoded using BP decoding process: An [n, k] array code
C = [ai,j ]1≤i≤b,1≤j≤n is called a t-erasure tolerating [n, k]
array BP-XOR code if all information symbols v1, · · · , vbk
can be recovered from any n− t columns of the matrix using
the BP-decoding process on the BEC.

In this paper, we analyze the encoding symbol degree
requirements for array BP-XOR codes, present new necessary
conditions for general array codes and array BP-XOR codes,
and give a complete characterization of degree two BP- XOR
codes. These necessary conditions are used as a guideline for
constructing several array BP-XOR codes and the characteri-
zation of degree two BP-XOR codes are used to design new
edge-colored graphs. Meanwhile, these necessary conditions
are used to show that the codes by Feng, Deng, Bao, and
Shen [9], [10] are incorrect.

The structure of the paper is as follows. Section II estab-
lishes the degree requirements for weakly systematic array
codes. Section III proves necessary conditions for the existence
of array BP-XOR codes. Section IV shows that the necessary
conditions in Section III is sufficient for degree two encoding
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symbol based array BP-XOR codes. Bounds for high degree
encoding symbol based array BP-XOR codes are briefly
discussed in Section V. Using the results in Section II, Section
VI shows that the codes in [9] are incorrect.

II. DEGREE REQUIREMENTS FOR WEAKLY SYSTEMATIC
ARRAY CODES

For each MDS b × n array code C (not necessarily a BP-
XOR code) such that the original data could be recovered from
any k ≤ n columns, let Gi be a bk × b binary matrix such
that (yi,1, · · · , yi,b) = (x1, · · · , xbk)Gi, where (yi,1, · · · , yi,b)
is the encoding symbols in the ith column of C, (x1, · · · , xbk)
is the information symbols, and the addition of two strings in
M is defined as the XOR on bits. In other words, we could
consider Gi as the generator matrix for the ith column of C.
The generator matrix for C is defined as the bk × bn matrix
GC = [G1, G2, · · · , Gn].

An array code C is called systematic if there exist 1 ≤
i1, · · · , ik ≤ n such that [Gi1 , · · · , Gik ] is the kb×kb identity
matrix Ikb. An array code C is called weakly systematic if
there exists a kb×kb permutation matrix P such that GCP =
[Ikb|AC ] where AC is a kb× (n− k)b binary matrix.

A bt×bn binary matrix matrix H is said to be a parity-check
matrix of a b × n array code C if we have HyT = 0 where
y = (a1,1, · · · , ab,1, · · · , a1,n, · · · ab,n), x = (v1, · · · , vbk).
By [23], we have the following proposition.

Proposition 2.1: (MacWilliams and Sloane [23]) If GC =
[Ikb|A] is the generator matrix for a systematic array code C,
then HC = [AT |I(n−k)b] is the parity check matrix for C.

By Proposition 2.1, it is straightforward to get the following
proposition.

Proposition 2.2: If the GC = [Ikb|A]P−1 is the generator
matrix for a weakly systematic array code C, then HC =
[AT |I(n−k)b]PT is the parity check matrix for C.

For a weakly systematic b × n MDS array code C with
generator matrix GC = [G1, G2, · · · , Gn] = [Ikb|A]P−1 and
parity check matrix HC = [AT |I(n−k)b]PT , the information
symbols could be recovered from any k columns of encoding
symbols in the array code C. Thus for each i ∈ [1, kb],
there exist j1, · · · , jn−k+1 ∈ [1, n] such that for each j ∈
{j1, · · · , jn−k+1}, the ith row of Gj contains at least one non
zero element.

The dual code of the weakly systematic b × n MDS
array code C is a b × n MDS array code CD with HC =
[AT |I(n−k)b]PT as the generator matrix and all the informa-
tion symbols could be recovered from any n− k columns of
encoding symbols in the array code CD. Thus it is straight-
forward to verify that each row of AT should have at least k
non zero elements. In other words, each column of A should
have at least k non zero elements.

Combining the above discussion, we get the following
Theorem 2.3. It should be noted that Blaum and Roth [6, page
52, Proposition 3.4] presented similar results for systematic
array codes.

Theorem 2.3: For a weakly systematic b × n MDS array
code C with generator matrix GC = [G1, G2, · · · , Gn] =

[Ikb|A]P−1 and parity check matrix HC = [AT |I(n−k)b]PT ,
each row of A contains at least n− k non zero elements and
each column of A contains at least k non zero elements.

The above discussion shows that for each weakly systematic
MDS b × n array BP-XOR code C, it contains either degree
one encoding symbols or degree k′ encoding symbols for
k′ ≥ k. Our examples in Table VIII of Section IV show
that the above requirements are not necessary for non weakly
systematic array codes.

III. NECESSARY CONDITIONS ON DEGREES OF ARRAY
BP-XOR CODES

Wang [33] showed the equivalence between edge-colored
graphs and array BP-XOR codes with degree two encoding
symbols. In particular, degree two encoding symbols are
sufficient to construct [n, 2] MDS b×n array BP-XOR codes.
Generally, we are interested in [n, k] MDS b × n array BP-
XOR codes for any k < n.

For an [n, k] MDS b × n array BP-XOR code, we assume
that there are bk information symbols, each of which is a
variable that takes value from M = {0, 1}l. The following
theorem provides a necessary condition for the existence of
array BP-XOR codes.

Theorem 3.1: Let C = [ai,j ]1≤i≤b,1≤j≤n be an [n, k] MDS
b×n array BP-XOR code such that the degree of each encod-
ing symbol ai,j is less than or equal to σ < k+(k−1)/(b−1).
Then we have

n ≤ k + σ − 1 +

⌊
σ(σ − 1)(b− 1)

(k − σ)b+ σ − 1

⌋
(1)

Proof. By the fact that there are n−k erasure columns, each
information symbol must occur in at least n− k+1 columns.
Since there are kb information symbols (data fragments) to
encode, the total number of information symbol occurrences
in the array BP-XOR code C is at least kb(n− k + 1).

In order for the BP decoding process to work, we must start
from a degree one encoding symbol. Thus we need to have at
least n−k+1 degree one encoding symbols in distinct columns
of C. This implies that we could use at most bn− (n− k+1)
cells to hold encoding symbols for degree two to σ. In other
words, C contains at most σ(bn − (n − k + 1)) + n − k + 1
occurrences of information symbols. By the above fact, we
must have

kb(n− k + 1) ≤ σ(bn− (n− k + 1)) + n− k + 1.

By rearranging the terms, we get

kbn− kb(k − 1) ≤ σbn− (σ − 1)(n− k + 1).

If we move all terms to the right hand side and rewrite the
inequality as variables of b and n, we get

k(k − 1)b− ((k − σ)b+ (σ − 1))n+ (σ − 1)(k − 1) ≥ 0.

That is,

n((k − σ)b+ σ − 1) ≤ (k − 1)(kb+ σ − 1). (2)
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By σ < k + (k − 1)/(b− 1), we have (k − σ)b+ σ − 1 > 0.
Since n must be an integer, (2) implies (3)

n ≤
⌊
(k − 1)(kb+ σ − 1)

(k − σ)b+ σ − 1

⌋
=

⌊
(k − σ)kb+ k(σ − 1) + (σ − 1)kb− (σ − 1)

(k − σ)b+ σ − 1

⌋
= k +

⌊
(σ − 1)(kb− 1)

(k − σ)b+ σ − 1

⌋
= k +

⌊
(σ − 1)(kb− bσ + σ − 1 + bσ − σ)

(k − σ)b+ σ − 1

⌋
= k + σ − 1 +

⌊
σ(σ − 1)(b− 1)

(k − σ)b+ σ − 1

⌋
(3)

Thus (1) holds. 2

It is easy to see that the hypotheses of Theorem 3.1 are
satisfied if k ≥ σ ≥ 2. So we have the following corollary.

Corollary 3.2: Suppose that k ≥ σ ≥ 2. Then (1) holds.
Next, we observe that equation (1) can be strengthened if

σ > 2.
Theorem 3.3: Suppose that (k − σ)b + σ − 1 > 0, σ > 2,

and σ(σ − 1)(b − 1)/((k − σ)b + σ − 1) is an integer. Then
equality cannot hold in (1).

Proof. If equality holds in (1), then the following conditions
must be satisfied:

• There are n − k + 1 encoding symbols having degree 1
and the remaining bn− (n−k+1) encoding symbols all
have degree σ.

• The encoding symbols of degree 1 occur in n − k + 1
different columns of the array.

Suppose we choose k columns such that only one of these
columns contains an encoding symbol of degree 1. Then within
these k columns, all but one of the encoding symbols have
degree 3 or greater. It therefore follows that the BP process
cannot succeed. 2

When k = σ, (1) can be simplified.
Corollary 3.4: 1) If k = σ = 2, then

n ≤ 2b+ 1. (4)

2) If k = σ > 2, then

n ≤ kb+ k − 2. (5)

Proof. The equation (4) follows from (1). The equation (5)
follows from Theorem 3.3. 2

As an example, the code in Table I shows that the equality
can hold in (4).

TABLE I
ARRAY BP-XOR CODE FOR b = 2, n = 5, k = 2, σ = 2

v1 v2 v3 v4 v1 ⊕ v2
v2 ⊕ v3 v1 ⊕ v4 v2 ⊕ v4 v1 ⊕ v3 v3 ⊕ v4

IV. DEGREE TWO MDS ARRAY BP-XOR CODES AND
EDGE-COLORED GRAPHS

By Corollary 3.4 and Theorem 3.3, Table II lists the upper
bounds of n for the existence of [n, k] MDS array BP-XOR
codes with σ = 2.

TABLE II
UPPER BOUNDS OF n FOR [n, k] MDS ARRAY BP-XOR CODES WITH

σ = 2

k 2 3 3 [4,∞]
n 2b+ 1 4 if b ≤ 2 5 if b ≥ 3 k + 1

In this section, we give a complete characterization of
degree two MDS array BP-XOR codes by showing that the
bounds in Table II are sufficient. We first describe the edge-
colored graph model by Wang and Desmedt [34]. The reader
should be reminded that the edge-colored graph model in [34]
is slightly different from the edge-colored graph definition in
most literatures. In most literatures, the coloring of the edges is
required to meet the condition that no two adjacent edges have
the same color. This condition is not required in the definition
of [34].

Definition 4.1: (Wang and Desmedt [34]) An edge-colored
graph is a tuple G = (V,E,C, f), with V the node set, E the
edge set, C the color set, and f a map from E onto C. For
any set Z ⊆ E, let f(Z) = {f(e) : e ∈ Z}. The structure

ZC,t = {Z : Z ⊆ E and |f(Z)| ≤ t}.

is called a t-color adversary structure. Let A,B ∈ V be
distinct nodes of G. A,B are called (t + 1)-color connected
for t ≥ 1 if for any color set Ct ⊆ C of size t, there is a path
p from A to B in G such that the edges on p do not contain
any color in Ct. An edge-colored graph G is (t + 1)-color
connected if and only if for any two nodes A and B in G,
they are (t+ 1)-color connected.

In [33], Wang showed the equivalence of degree two en-
coding symbol based array BP-XOR codes and edge-colored
graphs.

A. [n, 2] MDS array BP-XOR codes with σ = 2 from [33]

By Theorem 3.1, a necessary condition for the existence of
[n, 2] MDS array BP-XOR codes with σ = 2 is n ≤ 2b + 1.
Wang [33] constructed [n, 2] MDS b×n array BP-XOR codes
with n = 2b + 1 using edge-colored graphs based on perfect
one-factorization of complete graphs.

We first briefly review the construction of [n, 2] MDS array
BP-XOR codes in Wang [33]. Let p be a prime number with
n ≤ p. Using perfect one-factorization of Kp+1, Wang [33]
constructed the (p−1)-color connected edge-colored graph in
Table III where edges in the i-th column have the color ci.

The edge-colored graph in Table III is converted to the b×p
array BP-XOR code in Table IV by mapping each edge to a
degree two encoding symbol and removing the occurrence of
node vp, and the [n, 2] MDS b×n BP-XOR code is obtained by
taking any of the n columns in Table IV, where b = (p−1)/2.
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TABLE III
(p− 1)-COLOR CONNECTED EDGE-COLORED GRAPHS

〈v1, vp−1〉 · · · 〈vp, vp−2〉
〈v2, vp−2〉 · · · 〈v1, vp−3〉
· · · · · · · · ·

〈v(p−1)/2, v(p+1)/2〉 · · · 〈v(p−3)/2, v(p−1)/2〉

TABLE IV
(p− 1)/2× p BP-XOR CODE

v1 ⊕ vp−1 · · · vp−1 ⊕ vp−3 vp−2
v2 ⊕ vp−2 · · · vp−4 v1 ⊕ vp−3
· · · · · · · · · · · ·

vb ⊕ vb+1 · · · vb−2 ⊕ vb−1 vb−1 ⊕ vb

In the following sections, we show the construction of
degree two [n, k] MDS array BP-XOR codes and the corre-
sponding edge-colored graphs for 2 < k < n when such kind
of codes exist.

B. [n, k] MDS array BP-XOR codes with σ = 2 and n = k+1

Wang and Desmedt [34] constructed the 2-color connected
edge-colored cycle graph in Table V. For n = k+1, the edge-

TABLE V
2-COLORED CONNECTED EDGE-COLORED GRAPH

〈v0, v1〉 〈v1, v2〉 · · · 〈vn−1, vn〉 〈vn, v0〉

colored graph in Table V could be used to obtain the [n, k]
MDS array BP-XOR codes with σ = 2 in Table VI.

TABLE VI
2-COLORED CONNECTED EDGE-COLORED GRAPH

v1 v1 ⊕ v2 · · · vn−1 ⊕ vn vn

Based on the construction in Wang and Desmedt [34], one
can obtain general [k+1, k] MDS b×n array BP-XOR codes
with σ = 2 by gluing together the v0 nodes of b copies of
edge-colored cycle graphs. For the example of b = 2 and
n = 4, the array code in Table VII is a [4, 3] MDS array BP-
XOR code. The corresponding edge-colored graph is shown
in Figure 1.

C. [n, 3] MDS array BP-XOR codes with σ = 2

By Theorem 2.3, there is no weakly systematic [n, 3] array
BP-XOR codes for σ = 2. Theorem 3.1 shows that a necessary
condition for the existence of [n, 3] MDS array BP-XOR codes
with σ = 2 is n = 4, b ≥ 1 or n = 5, b ≥ 3.

For the case of n = 4, b ≥ 1, the codes in Section IV-B
show that there exist [4, 3] MDS b× 4 array BP-XOR codes.

For the case of n = 5, b = 3, Table VIII contains two [5, 3]
MDS 3 × 5 array BP-XOR codes with σ = 2. The corre-
sponding 3-color connected edge-colored graphs are shown in
Figure 2 (removal of any two colors will not disconnect the
graph).

TABLE VII
ARRAY BP-XOR CODE FOR b = 2, n = 4, k = 3

v1 v2 v3 v4
v5 ⊕ v4 v5 ⊕ v3 v6 ⊕ v2 v6 ⊕ v1

Fig. 1. 2-color connected edge-colored graph for the code in Table VII
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The first graph in Figure 2 contains a four node cycle
(v4, v5, v9, v8) while the second graph in Figure 2 does not
contain any four node cycle. Thus the two [5, 3] MDS 3 × 5
array BP-XOR codes in Table VIII are not isomorphic.

Fig. 2. 3-color connected edged-colored graphs
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For any integer u ≥ 1, the graphs in Figure 2 could be
used to construct 3-color connected edge-colored graphs with
9u+ 1 nodes, 5 colors, and 15u edges by gluing together the
v0 nodes of u copies of the graphs in Figure 2.

D. [n, k] MDS array BP-XOR codes with σ = 2 and k ≥ 4

By Theorem 2.3, there is no weakly systematic [n, k] array
BP-XOR codes for σ = 2 and k ≥ 4. Theorem 3.1 shows that
a necessary condition for the existence of [n, k] MDS array
BP-XOR codes with σ = 2 and k ≥ 4 is n ≤ k + 1. Since
we also have k < n, it must be that n = k + 1. The codes
in Section IV-B show that there exist [n, k] MDS 1× n array
BP-XOR codes with n = k + 1 and σ = 2.

TABLE VIII
TWO ARRAY BP-XOR CODES FOR b = 3, n = 5, k = 3

v1 v1 ⊕ v2 v2 ⊕ v3 v7 v3
v3 ⊕ v4 v4 ⊕ v5 v5 ⊕ v6 v9 ⊕ v1 v2 ⊕ v6
v6 ⊕ v7 v7 ⊕ v8 v8 ⊕ v9 v4 ⊕ v8 v9 ⊕ v5
v1 v2 v3 v2 ⊕ v5 v5 ⊕ v8

v6 ⊕ v7 v1 ⊕ v4 v4 ⊕ v5 v3 ⊕ v7 v4 ⊕ v7
v3 ⊕ v8 v8 ⊕ v9 v2 ⊕ v6 v1 ⊕ v9 v6 ⊕ v9
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V. HIGH DEGREE MDS ARRAY BP-XOR CODES

A. Upper bounds for higher degree MDS array BP-XOR codes

By Theorem 3.1, Theorem 3.3, and Corollary 3.4, Table
IX lists the upper bounds of n for the existence of [n, k]
MDS array BP-XOR codes with σ = 3, 4, 5. It should be
noted that the upper bounds in Table IX are obtained without
any constraint on the values of b. In other words, we assume
that b could take any values when necessary. When there
are restrictions on the largest values that b could take, then
Theorem 3.1 could be used to get stronger upper bounds on
n. As an example, for σ = 3, k = 4, Theorem 3.1 gives
n ≤ 12− 18/(b+ 2). When b ≥ 17, this gives n ≤ 11 which
is the bound in the table. However, for b < 17, the upper bound
on n will be smaller than 11. We should also mention that the
bounds in Table IX are upper bounds (necessary conditions).
At present, it is not known whether any of these bounds could
be achieved.

TABLE IX
UPPER BOUNDS OF n FOR [n, k] MDS ARRAY BP-XOR CODES WITH

σ = 3, 4, 5

σ = 3 σ = 4 σ = 5
k n k n k n
3 3b+ 1 4 4b+ 2 5 5b+ 3
4 11 5 19 6 29
5 9 6 14 7 20

[6, 8] k + 3 [7, 8] 13 8 18
[9,∞] k + 2 [9, 15] k + 4 9 17

[16,∞] k + 3 [10, 11] k + 7
[12, 13] k + 6
[14, 24] k + 5
[25,∞] k + 4

From Theorem 3.1, it is easy to show for any b and any
k ≥ σ2 that the upper bound for the existence of [n, k] MDS
degree σ array BP-XOR codes is n ≤ k + σ − 1.

B. Comparison with bounds for linear MDS codes

As mentioned in [6, Introduction], each [n, k] MDS linear
code over the finite field GF (2b) could be considered as an
MDS b× n array code (not necessarily array BP-XOR code).
However, the converse is not true (see Theorem 5.1 in Section
V-C. Table X lists some known maximum value of n (see, e.g.,
[12], [28]) for the existence of [n, k] MDS linear codes over
GF (2b) with b ≥ 2. For other values of 5 < k < 2b − 1, the

TABLE X
MAXIMUM VALUE OF n FOR [n, k] MDS LINEAR CODES OVER GF (2b)

k 2 3 4 5 [2b,∞]
n 2b + 1 2b + 2 2b + 1 2b + 2 k + 1

well-known MDS conjecture states that the maximum value
for n is 2b + 1. For k = 2b − 1, the MDS conjecture states
that the maximum value for n is 2b + 2. This conjecture was
proved to be true for b ≤ 4. Furthermore, Bush [7] showed

that n ≤ 2b + k − 1 for 2 ≤ k < 2b. This upper bound has
been improved to n ≤ 2b + k − 3 for k ≥ 4 in [13] (see also
[26]). Comparing the analysis in the previous sections and the
values in Table X, we see a big gap for the existence of MDS
b×n array BP-XOR codes over GF (2) and MDS linear codes
over GF (2b).

C. Array codes (not necessarily array BP-XOR codes)

In the previous sections, we provided the upper bounds of n
for [n, k] MDS array BP-XOR codes with σ ≥ 3. We do not
know whether these bounds are sufficient. In the literature,
there have been some constructions for high degree array
codes though these codes are not BP-process decodable. For
example, the authors of [14], [8] showed that if 2 is primitive
in Fp, then one can construct (p−1)/σ×(p−1) array codes for
σ = 3 and σ = 4 such that the information symbols could be
recovered from any k = σ columns of the encoding symbols.

As an example, we briefly describe the construction in [14],
[8] . Let p be a prime such that 2 is primitive in Fp. In the finite
field Fp, pick an element α of multiplicative order σ(= 2, 3, 4)
and an element β of multiplicative order p−1. Let C−1 = {0}
and

C0 = {α0, α1, · · · , ασ−1}

be the cyclic subgroup generated by α. For 1 ≤ i < p−1
σ , let

Ci = βiC0 be the coset of C0. Then C−1, C0, · · · , C p−1
σ −1

is
a partition of {0, 1, · · · , p− 1}. For (i, j) ∈ [−1, p−1σ − 1]×
[0, p− 2], let

D′i,j = 〈Ci + j〉p

where 〈Ci + j〉p denotes the set that is obtained by adding j
to the element of Ci modulo p.

It should be noted that exactly one of the sets D′−1,j , D0,j ,
· · · , D p−1

σ −1,j
contains p − 1. For each j ∈ [0, p − 2], let

D0,j , D1,j , · · · , D p−1
σ −1,j

be a list of the sets D′i,j such that
p− 1 /∈ D′i,j .

Define the (p− 1)/σ× (p− 1) array code Cσ = [ai,j ] such
that ai,j is the exclusive-or of all elements in Di,j . It is shown
in [14] that all of the information symbols could be recovered
from any k = σ columns of the encoding symbols of C. For
p = 13, σ = 3, α = 3, and β = 2, we have

C−1 = {0} C0 = {1, 3, 9} C1 = {2, 6, 5}
C2 = {4, 12, 10} C3 = {8, 7, 11}

Theorem 5.1: There is a [12, 4] MDS 3× 12 array code C
which is not a [12, 4] MDS linear code over GF (23).

Proof. For the code from [14], [8] that we have just
discussed, let σ = 4 and p = 13. Then we get a [12, 4] MDS
3 × 12 array code C. By Table X, for k = 4 and b = 3, we
have n ≤ 9 for the existence of [n, 4] linear MDS code. Thus
C is not a MDS linear code over GF (23). 2

VI. INCORRECT CODES IN [9]

Feng, Deng, Bao, and Shen [9], [10] introduced extended
Reed-Solomon “MDS” array codes to tolerate three column
faults [9] and multiple (≥ 4) column faults [10] respectively.
In the following we show that the codes in [9] are incorrect.
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Both [9] and [10] used similar techniques and analysis, and
we believe the codes in [10] are incorrect as well. But we did
not try to give the counter examples for [10].

Using circular permutation matrices as blocks,
Vandermonde-like matrices are constructed as parity
check matrices for extended Reed-Solomon codes to tolerate
three columns faults in [9]. In particular, the authors used a
sequence of Example 2.1 [9, pages 1072-1073], Examples 2.2
[9, pages 1073], Examples 2.3 [9, pages 1074], Examples 3.1
[9, pages 1075], and Examples 3.2 [9, pages 1076] to show
how to construct a 4× 8 array codes to tolerate three column
erasure. After the code is constructed, a general decoding
procedure is presented in [9, Section 4 on page 1076]. But the
theoretical decoding procedure is not used to decode the code
based on Examples 3.2 [9, pages 1076]. In the following, we
show that the codes in Examples 3.2 [9, pages 1076] could
not be decoded. Indeed, since all the codes in [9] do not meet
the degree requirements for general array codes in Theorem
2.3, these codes will not decode.

The parity check matrix in Examples 3.2 [9, pages 1076] is
defined as H = [I|A] where I is 4 · 3 × 4 · 3 (i.e., 12 × 12)
identity matrix and A is the following 4 ·3×4 ·5 (i.e., 12×20)
matrix.

A =



1000 1000 1000 1000 1000
0100 0100 0100 0100 0100
0010 0010 0010 0010 0010
0001 0001 0001 0001 0001

1000 0000 0001 0010 0100
0100 1000 0000 0001 0010
0010 0100 1000 0000 0001
0001 0010 0100 1000 0000

1000 0001 0100 0000 0010
0100 0000 0010 1000 0001
0010 1000 0001 0100 0000
0001 0100 0000 0010 1000


For the 4×8 array coded defined by the parity check matrix

H = [I|A], it is claimed that the code distance equals 4 (that
is, k = 5) in [9]. That is, it will tolerate 3 erasure columns.
By Theorem 2.3, each column of H = [I|A] should contain
at least 3 non zero elemenst. However, each of the columns in
7, 8, 9, 11, 14, 16, 17, 18 contains 2 non-zero element. In other
words, the code defined by the parity check matrix H = [I|A]
could not tolerate k = 5 erasure columns.

As an example, we show why the code could not be
decoded. The code defined by the above parity check ma-
trix H = [I|A] could be represented in Table XI. It is
straightforward to check that the variable v7 only appears in
columns 2, 6, 7. Thus if we remove columns 2, 6, and 7, then
the variable v7 could not be recovered from the remaining
5 columns (i.e., columns 1, 3, 4, 5, 8). Similarly, each of the
variables v8, v9, v11, v14, v16, and v17 only appears in three
columns. Thus these variables could not be recovered when
the corresponding columns with their occurrences are missing.

TABLE XI
ARRAY CODE FOR b = 4, n = 8, k = 5 IN [9, EXAMPLES 3.2]

v1 v5 v9 v13 v17 v1 ⊕ v5 ⊕ v9 ⊕ v13 ⊕ v17
v2 v6 v10 v14 v18 v2 ⊕ v6 ⊕ v10 ⊕ v14 ⊕ v18
v3 v7 v11 v15 v19 v3 ⊕ v7 ⊕ v11 ⊕ v15 ⊕ v19
v4 v8 v12 v16 v20 v4 ⊕ v8 ⊕ v12 ⊕ v16 ⊕ v20

v1 ⊕ v12 ⊕ v15 ⊕ v18 v1 ⊕ v8 ⊕ v10 ⊕ v19
v2 ⊕ v5 ⊕ v16 ⊕ v19 v2 ⊕ v11 ⊕ v13 ⊕ v20
v3 ⊕ v6 ⊕ v9 ⊕ v20 v3 ⊕ v5 ⊕ v12 ⊕ v14
v4 ⊕ v7 ⊕ v10 ⊕ v13 v4 ⊕ v6 ⊕ v15 ⊕ v17

Similarly, the dual code of [9, Examples 3.2] in Table XI is a
4×8 array code which is shown in Table XII. It is also straight-
forward to check that the code in Table XII could not tolerate
5 column erasures. In other words, the original information
symbols could not be recovered from any three columns.
Specifically, each of the variables v5, v6, v7, v8, v9, v10, v11,
and v12 appears only in 5 columns. For example, v5 only
appears in columns 2, 4, 6, 7, 8. Thus v5 could not be recovered
from columns 1, 3, 5.

TABLE XII
DUAL ARRAY CODE OF [9, EXAMPLES 3.2] WITH b = 4, n = 8, k = 3

v1 v5 v9 v1 ⊕ v5 ⊕ v9 v1 ⊕ v6 ⊕ v11
v2 v6 v10 v2 ⊕ v6 ⊕ v10 v2 ⊕ v7 ⊕ v12
v3 v7 v11 v3 ⊕ v7 ⊕ v11 v3 ⊕ v8
v4 v8 v12 v4 ⊕ v8 ⊕ v12 v4 ⊕ v9

v1 ⊕ v7 v1 ⊕ v8 ⊕ v10 v1 ⊕ v12
v2 ⊕ v8 ⊕ v9 v2 ⊕ v11 v2 ⊕ v5
v3 ⊕ v10 v3 ⊕ v5 ⊕ v12 v3 ⊕ v6 ⊕ v9

v4 ⊕ v5 ⊕ v11 v4 ⊕ v6 v4 ⊕ v7 ⊕ v10

VII. CONCLUSION

In this paper, we presented new upper bounds for the
existence of [n, k] MDS array BP-XOR codes and showed
that these bounds could be achieved for k = 2. It is an open
question to show that these bounds are also achievable for
other values of k ∈ [3, n).
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