1,279 research outputs found

    Broken time-reversal symmetry probed by muon spin relaxation in the caged type superconductor Lu5Rh6Sn18

    Get PDF
    The superconducting state of the caged type compound Lu5Rh6Sn18 has been investigated by using magnetization, heat capacity, and muon spin relaxation or rotation (?SR) measurements, and the results interpreted on the basis of the group theoretical classifications of the possible pairing symmetries and a simple model of the resulting quasiparticle spectra. Our zero-field ?SR measurements clearly reveal the spontaneous appearance of an internal magnetic field below the transition temperature, which indicates that the superconducting state in this material is characterized by broken time-reversal symmetry. Further, the analysis of the temperature dependence of the magnetic penetration depth measured using the transverse-field ?SR measurements suggests an isotropic s?wave character for the superconducting gap. This is in agreement with the heat capacity behavior, and we show that it can be interpreted in terms of a nonunitary triplet state with point nodes and an open Fermi surface

    Scaling relation for determining the critical threshold for continuum percolation of overlapping discs of two sizes

    Full text link
    We study continuum percolation of overlapping circular discs of two sizes. We propose a phenomenological scaling equation for the increase in the effective size of the larger discs due to the presence of the smaller discs. The critical percolation threshold as a function of the ratio of sizes of discs, for different values of the relative areal densities of two discs, can be described in terms of a scaling function of only one variable. The recent accurate Monte Carlo estimates of critical threshold by Quintanilla and Ziff [Phys. Rev. E, 76 051115 (2007)] are in very good agreement with the proposed scaling relation.Comment: 4 pages, 3 figure

    On the stability in phase-lag heat conduction with two temperatures

    Get PDF
    We investigate the well-posedness and the stability of the solutions for several Taylor approximations of the phase-lag two-temperature equations.We give conditions on the parameters which guarantee the existence and uniqueness of solutions as well as the stability and the instability of the solutions for each approximationPeer ReviewedPostprint (author's final draft

    Diffuse large B-cell lymphomas, not otherwise specified, and emerging entities

    Full text link
    Diffuse large B-cell lymphoma (DLBCL) is an aggressive and heterogenous group of diseases and the most common subtype of non-Hodgkin lymphoma. In the past decade, there has been an explosion in molecular profiling that has helped to identify subgroups and shared oncogenic driving mechanisms. Since the 2017 World Health Organization (WHO) classification, additional studies investigating these genomic abnormalities and phenotypic findings have been reported. Here we review these findings in DLBCL and address the proposed changes by the 2022 International Consensus Classification

    Extended States in a One-dimensional Generalized Dimer Model

    Full text link
    The transmission coefficient for a one dimensional system is given in terms of Chebyshev polynomials using the tight-binding model. This result is applied to a system composed of two impurities located between NN sites of a host lattice. It is found that the system has extended states for several values of the energy. Analytical expressions are given for the impurity site energy in terms of the electron's energy. The number of resonant states grows like the number of host sites between the impurities. This property makes the system interesting since it is a simple task to design a configuration with resonant energy very close to the Fermi level EFE_F.Comment: 4 pages, 3 figure

    Chord distribution functions of three-dimensional random media: Approximate first-passage times of Gaussian processes

    Get PDF
    The main result of this paper is a semi-analytic approximation for the chord distribution functions of three-dimensional models of microstructure derived from Gaussian random fields. In the simplest case the chord functions are equivalent to a standard first-passage time problem, i.e., the probability density governing the time taken by a Gaussian random process to first exceed a threshold. We obtain an approximation based on the assumption that successive chords are independent. The result is a generalization of the independent interval approximation recently used to determine the exponent of persistence time decay in coarsening. The approximation is easily extended to more general models based on the intersection and union sets of models generated from the iso-surfaces of random fields. The chord distribution functions play an important role in the characterization of random composite and porous materials. Our results are compared with experimental data obtained from a three-dimensional image of a porous Fontainebleau sandstone and a two-dimensional image of a tungsten-silver composite alloy.Comment: 12 pages, 11 figures. Submitted to Phys. Rev.

    Spontaneous breaking of four-fold rotational symmetry in two-dimensional electronic systems explained as a continuous topological transition

    Full text link
    The Fermi liquid approach is applied to the problem of spontaneous violation of the four-fold rotational point-group symmetry (C4C_4) in strongly correlated two-dimensional electronic systems on a square lattice. The symmetry breaking is traced to the existence of a topological phase transition. This continuous transition is triggered when the Fermi line, driven by the quasiparticle interactions, reaches the van Hove saddle points, where the group velocity vanishes and the density of states becomes singular. An unconventional Fermi liquid emerges beyond the implicated quantum critical point.Comment: 6 pages, 4 figure
    • …
    corecore