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Chord-distribution functions of three-dimensional random media:
Approximate first-passage times of Gaussian processes
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The main result of this paper is a semianalytic approximation for the chord-distribution functions of three-
dimensional models of microstructure derived from Gaussian random fields. In the simplest case the chord
functions are equivalent to a standard first-passage time problem, i.e., the probability density governing the
time taken by a Gaussian random process to first exceed a threshold. We obtain an approximation based on the
assumption that successive chords are independent. The result is a generalization of the independent interval
approximation recently used to determine the exponent of persistence time decay in coarsening. The approxi-
mation is easily extended to more general models based on the intersection and union sets of models generated
from the isosurfaces of random fields. The chord-distribution functions play an important role in the charac-
terization of random composite and porous materials. Our results are compared with experimental data ob-
tained from a three-dimensional image of a porous Fontainebleau sandstone and a two-dimensional image of a
tungsten-silver composite alloy.@S1063-651X~99!06005-5#

PACS number~s!: 02.50.2r, 05.40.2a, 81.05.Rm, 47.55.Mh
as
un

at
tis
ch
at
is
g

io
b
es
ic
or

d

o
g
-
w
s

os-
of

ld.

ro-

or-
of
res-

As
ity
om
en-

of

g
as

d a
ses

of

s to

ure
on
e in-

si
lia
s
Re
I. INTRODUCTION

The statistical characterization and modeling of two-ph
disordered microstructure is a central problem in many f
damental and applied sciences@1#. Predicting the properties
of disordered materials relies on the availability of accur
microstructural models, which rely in turn on accurate sta
tical characterization. After the volume fraction of ea
phase, and interfacial surface area, the most important st
tical quantity is the two-point correlation function which
obtained from cross-sectional micrographs, or small-an
scattering experiments. Although the two-point correlat
function is very useful, there are a variety of important pro
lems where more detailed statistical information is nec
sary. Another useful characteristic of microstructure, wh
has proved essential in theory and application, is the ch
length distribution function@2#. The chord functions play an
important role in stereology@3#, mineralogy@4#, the interpre-
tation of small-angle x-ray scattering data@5#, and have been
incorporated in theories of mass transport in porous me
@6#. Recently the chord functions~and the related ‘‘lineal-
path’’ function @7#! have been employed in the generation
three-dimensional~3D! microstructural models for predictin
macroscopic properties@8–10#. In this paper, we derive ap
proximate forms of the chord functions for a relatively ne
model of random media based on Gaussian random field
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A useful model of two-phase random porous and comp
ite media is obtained by modeling the internal interface
the microstructure as the isosurface~or level cut! of a corre-
lated Gaussian random fieldy(r ) @11–15#. A region of space
can be divided into two phases~e.g., pore and solid! accord-
ing to whethery(r ) is less or greater than some thresho
We define phase 1 to occupy the region wherey(r )<b and
phase 2 to occupy the region wherey(r ).b. This is illus-
trated for two dimensions in Figs. 1~a! and 1~b!. The model,
and variants, have proved useful in describing the mic
structure of many different materials@8,16,17#; and a more
thorough characterization of the microstructure is an imp
tant goal. The two- and three-point correlation functions
the model can be calculated, but the chord functions are p
ently measured from simulations@8,17#. There are advan-
tages~for speed, accuracy, and interpretation! in obtaining
analytic expressions for the chord functions of the model.
we show, the problem is equivalent to finding the probabil
density governing the time it takes for a Gaussian rand
process to first cross an arbitrary threshold. This is a conv
tional first-passage time problem.

First-passage time problems arise in many branches
physics@18#, information theory@19#, queuing theory@20#,
ocean science@21#, and reliability studies in the engineerin
sciences@22# among others. For this reason the problem h
received a great deal of attention. Rice actually provide
formal series solution to the problem for Gaussian proces
@23#. However, the series involves very difficult integrals
which only the first is generally evaluated@18#; the results
being accurate for small time. There are many approache
finding useful approximations for first-passage times~the
aforementioned references provide reviews of the literat
in each field!. Here we restrict attention to methods based
the assumption that the lengths of successive chords ar

s,
.
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-
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dependent. This idea can be traced back to Siegert@24# and
McFadden@25#. The approximation we use is most clear
derived from the independent interval process@5,26# for
which the assumption of independent chords is true by d
nition. This approach was recently suggested for the ca
lation of persistence times in coarsening@27,28#. The method
can be extended to obtain the chord distributions, and a
ally provides an extremely useful way of viewing relat
problems in different fields. In the following sections w
derive some properties of the chord function and the in
pendent interval process. The model is then applied to
proximate the chord functions of level-cut Gaussian rand
fields. Finally, we compare the theoretical results with e
perimental data.

II. CHORD-DISTRIBUTION FUNCTIONS

For a two-phase medium, there is a chord distribut
associated with each phasepi(z) ( i 51,2). The quantity
pi(z)dz is defined as the probability that a randomly chos
chord in phasei ~a line segment with end points on the pha
interface! has length in the range@z,z1dz#. In Fig. 1~b!, we
illustrate calculation ofp1(z) andp2(z) for isotropic media:
An ‘‘infinite’’ line ~or many shorter ones with arbitrary or
entation! is drawn through the material, and the number
chords in phase 1@N1(z)# with length in the range@z,z
1dz# is counted. IfN is the total number of chords of phas
1, thenp1(z)dz5N1(z)/N. The quantityp2 is defined in an
analogous manner. An important quantity is the number
phase crossings per unit lengthnc52N/L. A fundamental
relation in stereology givesnc5 1

2 sv wheresv is the specific
surface, i.e., the surface area to total volume ratio of a
composite. Another useful relation follows from the fact th

FIG. 1. Generation of a two-phase model~b! by thresholding a
Gaussian random field~a!. The chord length distribution function
are calculated by counting the number of chords of a given len
~b!. In one dimension the chord lengthsz1 andz2 are defined by up
and down crossings~shown asu andd, respectively! of a threshold
b by a random process~c!.
fi-
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total length of the chords is equal to that of the original lin
(zN1(z)z1(zN2(z)z5L. If we divide byN and convert the
sums to integrals we have*p1(z)zdz1*p1(z)zdz52/nc .
Similarly (zNi(z)z5f iL wheref i is the volume fraction of
phasei. This gives the relation̂zi&5*pi(z)zdz52f i /nc .
These equalities are used extensively below. A useful sta
tical quantity is the lineal-path function of each pha
Li(z) ( i 51,2), which represents the probability that a ra
dom line segment of lengthz thrown into the material falls
completely within phasei and is related topi(z) by Li(z)
5 1

2 nc*z
`pi(x)(x2z)dx @7#.

One reason for the usefulness of the chord function is
pi(z) can be directly interpreted in terms of observable m
crostructure features. First, ifpi(0)Þ0 then, at the resolution
at which it is measured, phasei contains sharp corners. Se
ond, the value at whichpi(z) takes a maximum value pro
vides an estimate of the length scale associated with phai.
Another is provided by the average chord length^zi&. Third,
if pi(z)Þ0 for largez, connected regions in phasei at scale
z exist. This ‘‘connectedness’’ information~along a lineal
path! is clearly important if long-range phenomena~like
macroscopic properties! are to be studied. The direct rela
tionship betweenpi(z) and morphology shows that the cho
functions give a strong ‘‘signature’’ of microstructure an
are therefore an important tool in the characterization of
rous and composite media.

The chord and lineal-path functions are closely related
first-passage times in the theory of stationary time-depend
random processes. The analogy is shown in Fig. 1~c!. If the
values of a random field along a line are plotted against t
a one-dimensional random processy(t) is obtained. If a
down crossing of the thresholdb occurs att5td @so y(td)
5b#, the probability that the process first exceeds the thre
old in the interval@ td1t,td1t1dt# is p1(t)dt. The corre-
sponding density for the first down crossing after an
crossing ~sometimes called the second-passage time! is
p2(t). There are several other common first-passage tim
which relate to our work. Supposey(t) is a random process
representing the response of an electrical or mechanical c
ponent which fails ify(t) exceeds some~generally high!
threshold @y(t).b#. A key quantity is the probability of
failure F(t) in the interval@0,t# @29#. Since the safe region is
phase 1 the failure probability is justF(t)512L1(t)
@F(0)512L1(0)5f2 being the probability of instanta
neous failure#. A related quantity is the probability distribu
tion of failure timesf 1(t) given thatt50 is in the safe re-
gion @22#. This is given byf 1(t)52L18(t)/f1.

III. INDEPENDENT INTERVAL PROCESS

The independent interval process@5,26# is constructed by
taking the lengths of successive intervals to be independ
of one another and distributed according to the probabi
~chord! distribution functionsp1(z) and p2(z) for phase 1
and 2, respectively~this implies a stationary process!. Since
this completely defines the process it is possible to derive
other statistical properties~such as the two-point correlatio
function! from p1(z) andp2(z). The indicator functionI (x)
~which is unity in phase 1 and zero in phase 2! is very useful
in this regard. From above we have

th
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nc5^uI 8~x!u&5
2

^z1&1^z2&
, ~1!

f15^I ~x!&5
1

2
nc^z1&, ~2!

f25^12I ~x!&5
1

2
nc^z2&. ~3!

Note that the results are true irrespective of correlations
tween successive chords.

Now consider the two-point correlation function which
defined as

S11~x!5^I ~x1!I ~x2!&. ~4!

Stationarity of the process~and isotropy in more than on
dimension! implies that the average only depends onx
5ux22x1u. To expressS11 as a function ofp1 and p2 it is
necessary to derive some preliminary results. The metho
adapted from Ref.@27#. Although the model is independen
of any random field it is useful to describe the left-hand en
of chords in phase 1 and 2 as down crossings and up cr
ings, respectively~see Fig. 1!. Consider the probability
Ru1(x) that a point at distancex to the right of an up crossing
~or right-hand end of a chord in phase 1! falls in phase 1.
Suppose the chord~of phase 2! immediately to the right of
the down crossing has lengthz2. If z2.x then the point falls
in phase 2. Ifz2,x the chance that the point falls in phase
is Rd1(x2z2), whereRd1(y) is the probability that a point a
distancey to the right of a down crossing falls in phase
Thus

Ru1~x!5E
0

x

dz2p2~z2!Rd1~x2z2!. ~5!

Now consider the converse problem forRd1(x). Let z1 be the
length of the first chord~of phase 1! to the right of a down
crossing. The probability that a point a distancex from the
down crossing falls in phase 1 is unity ifz1.x and Ru1(x
2z1) if z1,x, giving

Rd1~x!5E
x

`

dz1p1~z1!1E
0

x

dz1p1~z1!Ru1~x2z1!. ~6!

Taking Laplace transforms of both equations and solving
have

Ru1̂5
p̂2~12 p̂1!

s~12 p̂1p̂2!
, ~7!

Rd1̂5
~12 p̂1!

s~12 p̂1p̂2!
, ~8!

where f̂ 5 f̂ (s)5*0
`e2sxf (x)dx denotes the usual Laplac

transform.
Next we need the probabilityQ1(y)dy that an arbitrary

point will fall in phase 1 a distance@y,y1dy# from the left
of the first down crossing on its right. The chance that
point falls on a 1-chord of length@z1 ,z11dz1# is
e-

is

s
ss-

e

e

1
2 ncp1(z1)z1dz1. The point will be uniformly distributed
along the chord, therefore if it falls on a chord of lengthz1
the probability that it lies a distance@y,y1dy# from the left
end is justdy/z1. To obtain the total probability we mus
sum over all chords withz.y, giving

Q1~y!dy5
nc

2 Ey

`

dz1p1~z1!z1

dy

z1
, ~9!

Q̂15
nc

2s
~12 p̂1!. ~10!

Note thatQ1(0)5 1
2 nc , as it should, since the probabilit

that a point lies within a distancedy ~to the left! of a down
crossing must be12 ncdy.

Recall thatS11(x) is the probability that two points a dis
tancex apart fall in phase 1. The chance that the second p
falls in phase 1~given that the first does! depends on whethe
the distance to the first up crossingy is greater or less than
the distancex. If y.x then the right-hand point falls in phas
1 with unit probability. Ify,x then the right-hand point falls
in phase 1 with probabilityRu1(x2y). Thus we have

S11~x!5E
x

`

dyQ1~y!1E
0

x

dyQ1~y!Ru1~x2y!. ~11!

Note thatS11(0)5f1 as it should sinceS11(0) is just the
probability that a single point falls in phase 1. Takin
Laplace transforms we obtain

Ŝ115
f1

s
2

nc

2s2

~12 p̂1!~12 p̂2!

12 p̂1p̂2

. ~12!

Two other correlation functions of the independent int
val process are important for later discussions. The fi
Sc1(x)5^uI 8(x1)uuI (x2)u&, is the 1D analog of the surface
void correlation function which arises in the study of 3
porous materials@1#. The second is the crossing-crossin
correlation functionScc(x)5^uI 8(x1)uuI 8(x2)u& analogous to
the surface-surface correlation function@1#. Again, stationar-
ity implies thatSc1 and Scc depend only on the distancex
5ux22x1u.

From the definition ofSc1 we have

eSc1~x!' K UI S x11
e

2D2I S x12
e

2D UI ~x2!L , ~13!

wheree is small. The expression on the right-hand side is
probability thatx1 lies within a distancee/2 ~which we call
ane interval! of a crossing and thatx2 lies in phase 1. With-
out loss of generality, we consider the casex2.x1. Now
there is an equal chance of the first point landing in ane
interval of an up or down crossing~probability 1

2 enc). The
probability thatx2 falls in phase 1 is then eitherRu1(x) or
Rd1(x). Hence, fore→0,

eSc1~x!5
1

2
enc@Ru1~x!1Rd1~x!# ~14!

or, using Laplace transforms,
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Ŝc15
nc

2s

~12 p̂1!~11 p̂2!

12 p̂1p̂2

. ~15!

Similarly we write the crossing-crossing correlation fun
tion as

e2Scc~x!' K UI S x11
1

2
e D2I S x12

1

2
e D U

3UI S x21
1

2
e D2I S x22

1

2
e D U L , ~16!

where the expression on the right is clearly the probabi
that both points lie within ane interval of a crossing. To
express this quantity in terms of the chord distributions s
eral additional functions are needed. LetRud(x) be the prob-
ability that a point a distancex from an up crossing falls in
ane interval of a down crossing. This can occur in two way
either the first chord of phase 2 adjacent to the up cros
has lengthz25x, or z2,x in which case the point falls nea
a down crossing with probabilityRdd(x2z2), whereRdd(y)
is the probability that a point at distancey to the right of a
down crossing is in ane interval of a down crossing. This i
expressed as

Rud~x!5ep2~x!1E
0

x

dz2p2~z2!Rdd~x2z2!. ~17!

The functionsRuu , Rdu are similarly defined and three add
tional relations among the four functions can be derived
solved to give

R̂ud5e p̂2 /~12 p̂1p̂2!, ~18!

R̂du5e p̂1 /~12 p̂1p̂2!, ~19!

R̂dd5R̂uu5e p̂1p̂2 /~12 p̂1p̂2!. ~20!

Now from the definition ofScc it is clear that

e2Scc~x!5
1

2
enc@Ruu1Rud1Rdu1Rdd# ~21!

ase→0. After taking Laplace transforms this gives

Ŝcc5
nc

2

p̂11 p̂212p̂1p̂2

12 p̂1p̂2

. ~22!

A final expression which is useful for relating this work
prior approaches is

R1u~x!5e f 1~x!1E
0

x

dyRuu~x2y! f 1~y!, ~23!

where R1u(x) is the probability that a point at distancex
from a point in phase 1 falls within ane interval of an up
crossing, andf 1(x) is the probability distribution of ‘‘failure
times’’ discussed earlier.

Although this analysis of the independent interval p
cess, and the results forSc1 andScc , appear new, variants o
Eq. ~12! for S11 have actually been derived in several qu
y

-

;
g

d

-

different contexts. It is useful to briefly demonstrate the
connections. The Poisson-Boolean model@2# of random two-
phase media has been widely studied and applied. In
model, grains~which may be of different shapes and size!
are placed at uncorrelated random points in space~so the
grains may overlap!. For spherical inclusions this is just th
overlapping sphere~or Swiss-cheese! model@1#. For convex
grains of any shape or size, the chord-distribution function
the phase exterior to the grains isp1(z)5lexp(2lz) where
l5sv/4f1. Since the grains are uncorrelated in space a
convex it is clear that the length of successive chords al
any line through a realization of the model will be indepe
dent. Therefore Eq.~12! applies. Specializing to Boolea
models @ p̂15l/(l1s)# we recover the well known resul
~e.g., Ref.@4#!

sŜ11

f1
5

12 p̂1

12 p̂1p̂2

. ~24!

SinceS11(x) is known for many Boolean models, this resu
allows p2 to be calculated:

p̂2511s/l2f1 /lŜ11. ~25!

Let us further specialize to the case of a 1D Boolean proc
where the grains are rods with random lengths distribu
according to the cumulative distribution functionC(z). For
this model S11(x)5f1exp$2l*0

x@12C(z)#dz% and the for-

mula for p̂2 becomes a well known result for the busy peri
in an M /G/` queue@20,30#.

The independent interval process is useful in the interp
tation of small-angle x-ray scattering data. In Refs.@5,26# the
Fourier transform ofd2S11/dx2 was derived in terms of the
Fourier transforms of the chord functions. The result can
shown to be equivalent to Eq.~12!. Rice’s @23# formulas for
S11 for two different types of random telegraph signal c
also be rederived using Eq.~12!. In the next section we show
how the independent interval process can be used to de
useful approximations of the chord functions for the sing
level-cut Gaussian random field~GRF! model.

IV. CHORD FUNCTIONS OF LEVEL-CUT GAUSSIAN
RANDOM FIELDS

A Gaussian field is statistically specified in terms of
field-field correlation function ^y(r 1)y(r 2)&5g(ur22r1u)
@23,31#. Here we consider isotropic stationary fields wi
zero mean@^y(r )&50# and unit variance@^y2(r )&5g(0)
51#. Many methods exist for generating GRF’s with a giv
g(r ). For example, in 1D we have

y~x!5(
i 51

N

ai coskix1bi sinkix, ki5
2p i

T
, ~26!

whereai andbi are independent Gaussian random variab
with mean zero and̂ai

2&5^bi
2&5(2p/T)F(ki). In the limit

N,T→` such thatN/T→` the correlation function isg(x)
5*0

`F(k)cos(kx)dx. F(k) is called a spectral density. Whe
F(k) is a wide or narrow distribution, the process is, resp
tively, said to be wide or narrow band. The 3D analog is



d

i

fu

le
y

th

ns
e

el
rd
o
th

s

ce
o

e

s

th
re
-

e
ve

old

of
we

just

e
cy

e

PRE 59 4957CHORD-DISTRIBUTION FUNCTIONS OF THREE- . . .
y~r !5 (
l 52N

N

(
m52N

N

(
n52N

N

clmne
iklmn•r, ~27!

where k lmn5(2p/T)( l i1mj1nk) and cl ,m,n5almn

1 iblmn . For y real and^y&50 we takecl ,m,n5 c̄2 l ,2m,2n
andc0,0,050. As above,almn andblmn have mean zero an
^almn

2 &5^blmn
2 &5 1

2 (2p/T)3r(klmn). In this case g(r )
54pr 21*0

`4pkr(k) sinkrdk. A two-dimensional random
field is shown in Fig. 1~a!.

A two-phase level-cut GRF model is specified by the m
crostructure indicator functionI (r )5H„b2y(r )…, whereH
is the Heaviside step function. There are two very use
properties of the Gaussian model. First the random field
ergodic~ensemble averages equal spatial averages!, and sec-
ond the variablesy(r i) i 51,2,3 . . . andtheir spatial deriva-
tives@“y(r i), etc.# are correlated Gaussian random variab
with known joint probability distribution. This allows man
useful statistical properties of the thresholded model~such as
S11) to be calculated.

In the preceding section we derived the properties of
independent interval process in terms ofp1 and p2. How-
ever, it is clear that if any two of the microstructure functio
(p1 , p2 , S11, Sc1 , Scc) are known the remainder can b
determined by means of Eqs.~12!, ~15!, and~22!. SinceS11,
Sc1, andScc can be calculated for the level-cut GRF mod
this allows an approximation to be derived for the cho
functions. The accuracy of the results will then depend
the validity of the hypothesis that successive chords of
model are uncorrelated~or nearly so!. For simplicity we con-
sider the case whereS11 and Sc1 are known. Simultaneou
solutions of Eqs.~12! and ~15! then give

p̂15
nc2s~Ŝc12sŜ111f1!

nc2s~Ŝc11sŜ112f1!
, ~28!

p̂25
Ŝc11sŜ112f1

Ŝc12sŜ111f1

. ~29!

This result can be considered a generalization of a re
approximation developed independently by the authors
Refs. @27# and @28#. In a study of the zero-threshold cas
@wherep(z)5p1(z)5p2(z)# they found

p̂5
nc1s~2Ŝ1121!

nc2s~2Ŝ1121!
, ~30!

where S11(x)5 1
4 1(1/2p)arcsin@g(x)#. This result is ob-

tained by substitutingf15f25 1
2 and Sc15nc/2 ~which is

true for any symmetric medium! into Eqs.~28! and~29!. The
result provided an excellent approximation for the ca
g(x)5@1/cosh(x/2)#d/2 (d51,2,3).

Clearly other approximations can be obtained using
independent interval process, and several have been p
ously given. For example, Eq.~17! was obtained by McFad
den @25# and Rice@32#, and approximate forms of Eq.~23!
have been used to obtain the distribution of failure tim
@22#. If the chords are uncorrelated all the methods will gi
identical results. An advantage of approximation~30! and its
generalization@Eqs. ~28! and ~29!# is that S11 and Sc1 are
-

l
is

s

e

,

n
e

nt
f

e

e
vi-

s

relatively simple to evaluate; the functionsRuu , Rdd , and
Rud appearing in the integral equations Eqs.~17! and~23! are
quite complex for a nonzero threshold@32#.

To evaluate the approximations for an arbitrary thresh
we have the following results:

f15
1

2
1

1

2
erf

b

A2
, nc5

g

p
e2~1/2!b2

, ~31!

S115f1
21

1

2pE0

g~x! dt

A12t2
expS 2

b2

11t D , ~32!

Sc15
nc

2
1

nc

2
erfFgb~12g!

A2uGu
G

2
g8exp@2b2/~11g!#

2pA12g2
erfF b

A2uGu
g8A12g

11gG ,

~33!

where g5A2g9(0) and uGu5g2@12g2(x)#2@g8(x)#2.
The results fornc @23# andS11 @13# are well known, and the
final expression forSc1 can be evaluated using the method
Rice as follows. For the level-cut Gaussian random field,
have

Sc15^d„b2y~x1!…uy8~x1!uH„b2y~x2!…&. ~34!

The variablesw5@w1 ,w2 ,w3#5@y(x1),y(x2),y8(x1)# have
Gaussian distributions with cross correlation matrix

gi j 5^wiwj&⇒G5F 1 g~x! 0

g~x! 1 2g8~x!

0 2g8~x! 2g9~0!
G ~35!

for x5ux22x1u and x2.x1. If x2,x1 , ^y(x1)y8(x2)&
5g8(uxu) but this does not affect the final result. To findSc1
we must therefore evaluate

E E E dwd~b2w1!H~b2w2!uw3u
e2~1/2!wTG21w

~2p!3/2uGu1/2
.

~36!

The integrals extend over all space and the final factor is
the joint probability density function ofwi . The result is
given in Eq.~33!.

To obtainpi it is necessary to invert Eqs.~28! and ~29!.
This can be done using a short and efficient algorithm@33#.
As previously noted,p̂i needs to be known to around nin
significant figures to achieve four significant figure accura
in the result@30#. To minimize cancellation errors in th
numerators and save one integration, we rewrite Eqs.~28!
and ~29! as

p̂15
S119̂ 2sSc1

T̂

nc2S119̂ 2sSc1
T̂

, ~37!
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p̂25
S119̂ 1sSc1

T̂

nc2S119̂ 1sSc1
T̂

, ~38!

whereSc1
T (x)5Sc1(x)2 1

2 nc . The Laplace transformsS119̂ (s)

andSc1
T̂ (s) on the right-hand side of Eqs.~37! and ~38! can

be evaluated using numerical quadrature.
To check the validity of the independent interval appro

mation, we measure the chord distribution directly from
alizations of the thresholded model. This is simpler~and
minimizes finite-size effects! in one dimension. A 1D ran-
dom processy1(x) can be obtained from a 3D GRFy3(r ) by
takingy1(x)5y3(r01n̂x) wherer0 is an arbitrary origin and
n̂ is a unit vector with arbitrary orientation. Nowy1(x) can
be generated independently ofy3(r ) by using the 1D defini-
tion for y(x) given in Eq. ~26!. To ensure thaty(x) and
y1(x) are statistically identical they must shareg(x). This is
true if F(k)54p*k

`sr(s)ds, where F and r are, respec-
tively, the spectral densities of the 1D and 3D random fie
This shows thatF(k) must be a nondecreasing function f
1D random processes obtained from 3D random fields.

In the modeling of random media, the following Fouri
transform pairs @g(x) and r(k)52F8(k)/(4pk)# have
proved useful:

ga5e2x/jS 11
x

j D , ~39!

Fa5
4j

p~11j2k2!2
, ~40!

gb5e2x2/ l 0
2
, ~41!

Fb5
l 0

Ap
e2~1/4!k2l 0

2
, ~42!

gc5e2x/j~11x/j!
sin 2px/d

2px/d
, ~43!

Fc5
d

2p2 S tan21c21tan21c11
c1

11c1
2

1
c2

11c2
2 D ,

c65zS 2p

d
6kD . ~44!

For a finite number of crossings per unit length~or specific
surface in three dimensions! it is necessary thatg8(0)50
@23#. For simplicity we restrict attention to the followin
parameters which giveg5A2g9(0)51 mm21: ~a! j
51 mm; ~b! l 05A2 mm; and ~c! j5A2 mm, d
54p/A6 mm. A cross section of the two-phase mediu
generated in each of the three cases is shown in Figs. 2~a!–
2~c!. We have checked the approximation in the volum
fraction rangef1P@0.1,0.9#; results forf150.2 are shown
in Fig. 2 ~and are typical of those at other volume fraction!.
The independent interval approximation is seen to prov
remarkably accurate estimates of the measured chord d
butions.
-
-

.

e

e
tri-

The largest deviations between simulation and the
proximation are seen for the oscillatory correlation functi
gc(x). We can investigate this ‘‘narrow-band’’ limit by tak
ing j→` in gc(x), which gives

gd~x!5
sin 2px/d

2px/d
, ~45!

Fd5
d

2p
HS 2p

d
2kD . ~46!

The results forp1 at volume fractionsf150.2, 0.5, and 0.8
are shown in Fig. 3, andS11(x) is shown in Fig. 4. Atf1
50.5 the approximation is equivalent to that of Refs.@27,28#.
The approximation breaks down after one wavelengthd and
actually falls below zero~which is not inconsistent with the
derivation!. This is because the process@see Fig. 3~a!# has
approximately periodic regions, extending over seve
wavelengths, which implies some level of correlation b
tween adjacent chords. For example, atf150.5, a chord of
length ' 1

2 d is more likely to be followed by another o
approximately the same length than if it were randomly ch
sen according to the probability distributionp2(z). This con-
tradicts the assumptions of the independent interval appr
mation. The oscillations in the autocorrelation function~Fig.
4! clearly reflect appreciable order in the system.

Note that gd(x) represents the worst-case~or most
narrow-band! process corresponding to a 3D field sin
rd(k)}d(2p/d2k) ~i.e., an infinitely narrow band pass fil
ter!. However, the related 1D process corresponds to a
pass filter~i.e., it is not strongly narrow band!. This shows

FIG. 2. Chord functions of single-cut Gaussian random fields
volume fractionf150.2. The symbols are directly measured fro
simulations, and the lines correspond to the independent inte
approximation. The models@see Eqs.~39!–~44!# are shown in the
top row with side length 40mm: ~a! ga(x), s; ~b! gb(x), h; ~c!
gc(x), n. The chord functions correspond to the first-passage t
problem considered by Rice.
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that approximations valid for medium- and wide-ba
Gaussian random processes are sufficient to reproduce
chord functions of 3D models based on random fields. T
failure of the independent interval approximation in th
narrow-band limit is not critical for two reasons. First, th
modelgc(x) ~with j.0, for which the approximation is rea
sonable! has been found more relevant to physical mater
than modelgd(x) ~e.g., see Sec. VI!. Second, even in the
worst case, the approximation remains useful out to
wavelength. This may prove adequate for material charac
ization.

V. EXTENSION TO MORE COMPLEX MODELS

So far our results have been concerned with the conv
tional first-time distributions associated with an arbitra
threshold (b) of a Gaussian random process. However,

FIG. 3. The phase 1 chord function of a level-cut GRF w
g(x)5sin(kx)/(kx) (k5A3 mm) at three different volume frac
tions. The inset shows the microstructure atf150.2 ~side length
40 mm). A 1D transect~length 150 mm) of the random field is
shown in ~a!. The horizontal lines correspond to the threshold
each volume fraction. The independent interval assumption br
down because the process is nearly periodic in some regions.

FIG. 4. The normalized two-point correlation function@Eq.
~32!# of the random model shown in Fig. 3. The strong oscillatio
in S11(x) correspond to periodic correlations in the microstructu
the
e

ls

e
r-

n-

e

single-cut random field model is not sufficiently general
model the microstructure of many interesting materials.
model the bicontinuous structure of microemulsions, Be
@13# suggested that phase 1 be defined as the region in s
wherea,y(r ),b, this is the so-called two-cut model@Fig.
5~a!#. The two-cut model has also proven useful in interpr
ing conductivity and percolation behavior in polymer blen
@34#. Open cell foams~e.g., aerogels! and the porous network
of sandstones have been modeled by the intersection se
two statistically identical~but independent! two-cut fields
@Fig. 5~b!#, and closed cell foams may be modeled by t
union of two such structures@Fig. 5~c!# @8#. Our method can
be simply extended to these problems.

For Berk’s @13# two-cut model, we have

f15
1

2
erf

b

A2
2

1

2
erf

a

A2
, ~47!

nc5
Ag

p
~e2~1/2!b2

1e2~1/2!a2
!, ~48!

S115f1
21

1

2pE0

g~x! dt

A12t2
3FexpS 2a2

11t D
22expS 2abt2a22b2

2~12t2!
D 1expS 2b2

11t D G , ~49!

Sc15 f bb1 f ba2 f ab2 f aa , ~50!

where

t
ks

s
.

FIG. 5. The independent interval approximation compared w
simulations of the chord functions for three distinct models ba
on level-cut Gaussian random fields:~a! Berk’s two-cut model,s;
~b! the intersection set of two two-cut models,h; ~c! the union set
of two two-cut models,n. The side length of the images is 15mm.
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f ab5^H„a2y~x1!…d„b2y~x2!…uy8~x2!u&

5
Age2 ~1/2! b2

2p S 11erfFA g

2uGu~
a2bg!G D ~51!

2
g8

2pA12g2
expS 2

1

2

a222abg1b2

12g2 D
3erfFa2bg

A2uGu

g8

A12g2G . ~52!

Using these results we can directly apply the approxima
for the chord distributions. We use the field-field functio
gb(x) with l 05A2 mm and consider a ‘‘centered’’ two-cu
field (a52b) at volume fractionf50.2. The results are
shown as circles in Fig. 5 and show very good agreem
with simulations.

To evaluate the chord functions of the intersection a
union sets we first derive their statistical properties. Supp
V(x) andC(x) are the indicator functions of two indepen
dent, but statistically identical, models of random media w
propertiesf1 , nc , S11, andSc1. A new model is obtained by
forming the intersection set ofV andC which has indicator
function I (x)5V(x)3C(x). Clearly f1

I 5^I &5^V&^C&
5f1

2 and nc
I 5^uI 8u&5^uV8C1VC8u&5^uV8uC1VuC8u&

52^V&^uV8u&52f1nc . The relation uV8C1VC8u
5uV8uC1VuC8u is true everywhere except where the inte
face ofC andV intersects. The contribution of this error t
the final result is negligible. A similar reasoning can be a
plied to findS11

I andSc1
I , as well as corresponding results f

an analogously defined union set with indicator functi
I (x)5V(x)1C(x)2V(x)3C(x). In summary the results
needed to apply the approximation for the chord-distribut
function are

f1
I 5~f1!2, ~53!

nc
I 52f1nc , ~54!

S11
I 5~S11!

2, ~55!

Sc1
I 52S11Sc1 , ~56!

f1
U5f1~22f1!, ~57!

nc
U52~12f1!nc , ~58!

S11
U 52~f1!212S11~122f1!1~S11!

2, ~59!

Sc1
U 52Sc1~122f11S11!12nc~f12S11!. ~60!

Here the unsuperscripted microstructure properties co
spond to the primary modelsV andC and the superscripte
(I or U) functions are to be used in Eqs.~28! and ~29!.

Although Eqs.~53!–~60! are true for any independent ran
dom models, we restrict attention to the case where the
mary sets are obtained from Berk’s model@see Eqs.~47!–
~50! and Fig. 5~a!#. As above we consider centered mode
(a52b) at volume fractionf150.2 obtained from random
fields with correlation functiongb(x) ( l 05A2 mm). The
n

nt
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se

-

n

e-

ri-

results of the independent interval approximation are co
pared with simulations in Fig. 5. In general the approxim
tion is excellent. Forr ,3 mm significant deviations~up to
10%! are seen between the calculated and simulated va
of the chord distribution of phase 2 (p2).

VI. APPLICATION TO POROUS AND COMPOSITE
MATERIALS

To study the properties of a random medium it is impo
tant to have an accurate model of the microstructure. If
physical mechanisms responsible for the evolution of the
crostructure are not well known~or difficult to simulate! an
empirically based statistical model may be use
@8–10,12,16#. The level-cut GRF model is well suited to th
approach because of its generality: the morphology of
model may be ‘‘tuned’’ to some degree to match that of t
random medium. The simplest and most common morp
logical quantities are the density~or porosity! and the two-
point correlation function, which can both be measured fr
a cross-sectional image. It is possible to generate a G
model with approximately the same statistical properties
an appropriate choice of parameters@8,12,16#.

As an example we show a binarized image of a tungst
silver composite@35# along side a single-cut GRF model i
Fig. 6. The parameters of the model were derived in R
@36# as follows. The level-cut parameter is taken asb
520.84 so that the silver volume fractionf150.2 is ex-
actly that of the composite@Eq. ~31!#. The random field is
generated usingrc(k) @Eq. ~44!#. The length scales of the
random fieldj52.15 mm andd513.0 mm are chosen~by
a nonlinear least squares method! so that the two-point cor-
relation function of the model matches that of the compos
The theoretical and experimental values ofS11(r ) ~which are
practically indistinguishable! are shown in the inset of Fig 7
Since the volume fraction and two-point function do n
uniquely specify a random microstructure~i.e., many differ-
ent models may reproduce these morphological quant
@8#!, it is necessary to test the results. The chord functi
are ideal in this regard as they provide a strong signatur
microstructure and can be measured from a cross-secti
image. The independent interval approximation and exp
mental data are compared in Fig. 7. The reasonable ag
ment between theory and experiment indicates that
model is capturing important features of the tungsten-sil
composite.

FIG. 6. A binarized image of a silver-tungsten composite@35#
~a! compared with a model@36# based on a level-cut Gaussian ra
dom field~b!. The side length is 99.4mm. The parameters and th
model are chosen to reproduce the experimental two-point func
and chord-distribution function~see Fig. 7!.
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A second example is provided by a digitized image
Fontainebleau sandstone obtained by x-ray tomogra
@37,38#. To mimic the granular character of the sandsto
@Fig. 8~a!# we use a model based on the intersection se
n(55) single-cut Gaussian random fields. The result
shown in Fig. 8~b!. To match the porosity of the model wit
that of the sandstone (f50.154), we takeb50.48 for each
of the five primary random field models. This corresponds
f15(0.154)1/5. The experimental two-point function is re
produced by choosingj551.9 mm and d5272 mm in
model gc(r ) ~by a least squares method!. The independen
interval approximation for the chord functions is calculat
using the relationsS11

I 5(S11)
n and Sc1

I 5n(S11)
n21Sc1

@which are a straightforward extension of Eqs.~55! and
~56!#. The results are shown in Fig. 9. The model is able
mimic the two-point function extremely well, and the cho
functions with good accuracy. This provides evidence t
the model is reasonable. 3D images of the model and s
stone microstructures are shown in Figs. 10 and 11.
sandstone appears more well connected than the mode
model showing more isolated pores. This is actually an a
fact of the method used to plot the pore-solid interface.

FIG. 7. The main graph shows a comparison between the c
functions of a silver-tungsten composite~symbols! and the results
of the independent interval approximation for a level-cut Gauss
random field model. The composite and model are shown in Fig
The inset compares the experimental and model autocorrela
function g(x)5@S11(x)2f1

2#/(f12f1
2).

FIG. 8. A cross section of Fontainebleau sandstone~a! com-
pared with a model@36# based on the intersection set of five leve
cut Gaussian random fields~b!. The side length is 2.18 mm. Th
statistical properties of the sandstone and model are compare
Fig. 9.
f
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e
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algorithm was used to determine that 98.8% of the p
space in the model is connected to the outer faces, wh
compares well with 99.6% for the sandstone. Therefore
model is also able to capture the interconnections of
sandstone pores.

VII. CONCLUSION

We have derived a semianalytic approximation for t
chord-distribution functions (p1 andp2) of 3D random me-
dia. The approximation is based on the assumption that
cessive chord lengths are uncorrelated. The result can
applied to models for which the two-point (S11) and 1D
‘‘surface-void’’ (Sc1) correlation functions can be evaluate
The calculation ofS11 andSc1 is generally much easier tha
calculation of p1 and p2. The result is exact for Boolean

rd

n
6.
on

in

FIG. 9. The chord functions measured from a 3D image of F
tainebleau sandstone~symbols! compare well with the results of the
independent interval approximation~main graph! for a Gaussian
random field model. The inset shows the autocorrelation func
g(x)5@S11(x)2f1

2#/(f12f1
2). Three-dimensional realizations o

the sandstone and the model are shown in Figs. 10 and 11, re
tively.

FIG. 10. 3D representation of Fontainebleau sandstone sam
obtained by x-ray tomography@37,38#. The pore space is shown a
solid to aid visualization. The side length of the image is 960mm.
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models with convex grains since the assumption of indep
dent intervals is true. We have applied the approximation
the single level-cut Gaussian random field model of rand
materials. In this case the chord functions correspond
Rice’s first-passage time distribution for random noise. T
approximation is very accurate for wide-band random fiel
but loses accuracy after one ‘‘wavelength’’ of the field f
extremely narrow-band~approximately periodic! fields. Note
that a narrow-band field corresponds to a low pass~rather
than a narrow pass! filtered process in 1D.

The result also gives accurate results for Berk’s two-
GRF model and other models based on the intersection
union sets of level-cut GRF’s. This is important for gener
ing 3D models of random media using empirical informati

FIG. 11. A sandstone model based on Gaussian random fi
~cf. Fig. 10!. The independent interval approximation for the cho
distribution shows reasonable agreement with experimental
~Fig. 9!. Many of the apparently isolated regions of pore spa
~shown as solid! are artifacts of the plotting procedure.
,

n-
o

to
e
,

t
nd
-

measured from cross-sectional images; the two-point co
lation function does not necessarily provide sufficient info
mation, and good approximations for the chord functions
very useful. In this context it is possible to apply the appro
mation confidently if the two-point correlation function ex
hibits no~or weak! oscillations. To demonstrate the applic
tion of our results we have compared the approximation
experimental data obtained from images of a tungsten-si
composite and a porous sandstone.

In order to derive the chord function approximation w
studied the independent interval process in detail. We h
shown that the process underlies the derivation, and prov
useful links between, important results in many differe
fields. The general treatment of the process makes clea
relation between various approximations for different fir
passage times made in signal theory, the analysis of com
nent failure and persistence times in coarsening. From
expressions forp̂i @Eqs.~28! and~29!# it is simple to obtain
the lineal-path functions as Li5L21$f i /s2nc@1
1 p̂i(s)#/2s2%. For i 51 this is just the ‘‘survival probabil-
ity’’ in the context of random processes. Similarly the pro
ability density of ‘‘time to failure’’ given thatt50 falls in a
safe region isf 15L21$nc@12 p̂1(s)#/2f1s%. These expres-
sions can be inverted in the same way aspi . Due to its
apparent generality it would be useful to explore the prop
ties of the process further. Extensions to include correlat
between the chord lengths and the development of a 3D
log would be useful future studies.
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