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Chord-distribution functions of three-dimensional random media:
Approximate first-passage times of Gaussian processes
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The main result of this paper is a semianalytic approximation for the chord-distribution functions of three-
dimensional models of microstructure derived from Gaussian random fields. In the simplest case the chord
functions are equivalent to a standard first-passage time problem, i.e., the probability density governing the
time taken by a Gaussian random process to first exceed a threshold. We obtain an approximation based on the
assumption that successive chords are independent. The result is a generalization of the independent interval
approximation recently used to determine the exponent of persistence time decay in coarsening. The approxi-
mation is easily extended to more general models based on the intersection and union sets of models generated
from the isosurfaces of random fields. The chord-distribution functions play an important role in the charac-
terization of random composite and porous materials. Our results are compared with experimental data ob-
tained from a three-dimensional image of a porous Fontainebleau sandstone and a two-dimensional image of a
tungsten-silver composite allo}S1063-651X99)06005-5

PACS numbdps): 02.50—r, 05.40—-a, 81.05.Rm, 47.55.Mh

[. INTRODUCTION A useful model of two-phase random porous and compos-
ite media is obtained by modeling the internal interface of
The statistical characterization and modeling of two-phaséhe microstructure as the isosurfaee level cuy of a corre-
disordered microstructure is a central problem in many funlated Gaussian random fiejqr) [11-15. A region of space
damental and applied scienddd. Predicting the properties can be divided into two phasés.g., pore and soljdaccord-
of disordered materials relies on the availability of accuratdng to Whethery(r) is less or greater than some threshold.
microstructural models, which rely in turn on accurate statis\YVe define phase 1 to occupy the region whefe)< 8 and
tical characterization. After the volume fraction of eachPhase 2 to occupy the region whergr)>pB. This is illus-
phase, and interfacial surface area, the most important statifated for two dimensions in Figs(é and 1b). The model,
tical quantity is the two-point correlation function which is @nd variants, have proved useful in describing the micro-
obtained from cross-sectional micrographs, or small—anglétructure of many Q|ffgrent mater|aﬂ8,16,1ﬂ; anq a more
scattering experiments. Although the two-point correlationthorough characterization of the mlcrostructpre IS an Impor-
function is very useful, there are a variety of important prob-tant goal. The two- and three-point correlation functions of

: L ; A the model can be calculated, but the chord functions are pres-
lems where more detailed statistical information is neces-

o : . “ently measured from simulatior{8,17]. There are advan-
sary. Another useful characteristic of microstructure, Whlcg y 8,17

h d ol in th d lication. is the ch ages(for speed, accuracy, and interpretajion obtaining

as prove _esgenna |n_t eory and app 'Cat'on’ Is the chor nalytic expressions for the chord functions of the model. As
length distribution functiori2]. The chord functions play an e show, the problem is equivalent to finding the probability
important role in stereologhB], mineralogy{4], the interpre-  gensity governing the time it takes for a Gaussian random

tation of small-angle x-ray scattering ddfd, and have been process to first cross an arbitrary threshold. This is a conven-
incorporated in theories of mass transport in porous mediggnal first-passage time problem.
[6]. Recently the chord function&nd the related “lineal- First-passage time problems arise in many branches of
path” function[7]) have been employed in the generation of physics[18], information theory[19], queuing theoryf20],
three-dimensionaBD) microstructural models for predicting ocean sciencf21], and reliability studies in the engineering
macroscopic propertig8—10. In this paper, we derive ap- scienceg22] among others. For this reason the problem has
proximate forms of the chord functions for a relatively new received a great deal of attention. Rice actually provided a
model of random media based on Gaussian random fields.formal series solution to the problem for Gaussian processes
[23]. However, the series involves very difficult integrals of
which only the first is generally evaluatéd8]; the results
*Permanent address: Center for Microscopy and Microanalysidheing accurate for small time. There are many approaches to
University of Queensland, Brisbane, Queensland 4072, Australia. finding useful approximations for first-passage tim#ése
TOn sabbatical leave. Permanent address: Princeton Materials laforementioned references provide reviews of the literature
stitute and Department of Civil Engineering and Operations Rein each field. Here we restrict attention to methods based on
search, Princeton University, Princeton, NJ 08544. the assumption that the lengths of successive chords are in-
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Q Q ) O MAS total length of the chords is equal to that of the original line:
\) S (R 2,N1(2)z+2,N,5(2)z=L. If we divide byN and convert the
(a) 8 Q O sums to integrals we havép,(z)zdzt+ fp4(z)zdz=2/n..
Similarly £,N;(z)z= ¢;L whereg; is the volume fraction of
0/ phasei. This gives the relatioqz;)= [pi(z)zdz=2¢; /n..
@) @)i7a®

These equalities are used extensively below. A useful statis-
| tical quantity is the lineal-path function of each phase
Li(2) (i=1,2), which represents the probability that a ran-
dom line segment of length thrown into the material falls
completely within phasé and is related tg;(z) by L;(2)

= 3nafZpi(X) (x=2)dx [7].

One reason for the usefulness of the chord function is that
pi(z) can be directly interpreted in terms of observable mi-
crostructure features. First,f(0)# 0 then, at the resolution
at which it is measured, phaseontains sharp corners. Sec-
ond, the value at whiclp;(z) takes a maximum value pro-

/\

(C)O§ vides an estimate of the length scale associated with pghase
d\z o zd\ P NS\ Another is provided by the average chord len¢}). Third,
-1 y = \/ B=—052 \/ if p;(z) #0 for largez, connected regions in phasat scale

z exist. This “connectedness” informatiofalong a lineal
_ _ path is clearly important if long-range phenomerfike

FIG. 1. Generation of a two-phase modk] by thresholding a  macroscopic propertigsre to be studied. The direct rela-
Gaussian random fiel@). The chord length distribution functions tionship betweem;(z) and morphology shows that the chord
are calculatt_ed by _counting the number of chords of a given length,nctions give a strong “signature” of microstructure and
(b). In one dimension the chord lengthsandz, are defined by up 46 therefore an important tool in the characterization of po-
and down crossing&shown asu andd, respectively of a threshold rous and composite media
£ by a random process). The chord and lineal-path functions are closely related to

o ) first-passage times in the theory of stationary time-dependent
dependent. This idea can be traced back to Sid@ditand  3ndom processes. The analogy is shown in Fig). 1f the

McFadden[25]. The approximation we use is most clearly ya|yes of a random field along a line are plotted against time
derived from the independent interval procd$s26] for 5 gne-dimensional random procegd) is obtained. If a
which the assumption of independent chords is true by defigqwn crossing of the thresholél occurs att=t, [0 y(ty)
nition. This approach was recently suggested for the calcu= g1 the probability that the process first exceeds the thresh-

lation of persistence times in coarsen(i23,28. The method old in the interval[ty+t,ty+t+dt] is py(t)dt. The corre-
can be extended to obtain the chord distributions, and ac“é‘ponding density for the first down crossing after an up

ally provides an extremely useful way of viewing related crossing (sometimes called the second-passage )tirise

problems in different fields. In the following sections we p,(t). There are several other common first-passage times

derive some properties of the chord fl_mctlon and _the indeyyhich relate to our work. Supposgt) is a random process
pendent interval process. The model is then applied 0 @R, esenting the response of an electrical or mechanical com-
proximate the chord functions of level-cut Gaussian rando

! X ; ; onent which fails ify(t) exceeds somégenerally hi
f|eIQS. Finally, we compare the theoretical results with ex?hreshold[y(t)>,8]. A?/(kzey quantity is tﬁg proba)llailit)?hof
perimental data. failure F(t) in the interval[ 0t] [29]. Since the safe region is
phase 1 the failure probability is jusE(t)=1—L,(t)
Il. CHORD-DISTRIBUTION FUNCTIONS [F(0)=1-L1(0)=¢, being the probability of instanta-
) ) ~neous failurg A related quantity is the probability distribu-
For a two-phase medium, there is a chord distributiontion of failure timesf,(t) given thatt=0 is in the safe re-
associated with each phagg(z) (i=1,2). The quantity gion [22]. This is given byf,(t)= —L}(t)/¢.
pi(z)dzis defined as the probability that a randomly chosen
chord in phase (a line segment with end points on the phase
interface has length in the randez,z+dz]. In Fig. 1(b), we
illustrate calculation op,(z) andp,(z) for isotropic media:
An “infinite” line (or many shorter ones with arbitrary ori-  The independent interval procd$s26] is constructed by
entation) is drawn through the material, and the number oftaking the lengths of successive intervals to be independent
chords in phase IN;(z)] with length in the rangdz,z  of one another and distributed according to the probability
+dz] is counted. IfN is the total number of chords of phase (chord distribution functionsp;(z) and p,(z) for phase 1
1, thenp,(z)dz=N,(z)/N. The quantityp, is defined in an and 2, respectivelythis implies a stationary processince
analogous manner. An important quantity is the number othis completely defines the process it is possible to derive all
phase crossings per unit length=2N/L. A fundamental other statistical propertiesuch as the two-point correlation
relation in stereology gives.=3s, wheres, is the specific  function) from p;(z) andp,(z). The indicator functior (x)
surface, i.e., the surface area to total volume ratio of a 30which is unity in phase 1 and zero in phaga2very useful
composite. Another useful relation follows from the fact thatin this regard. From above we have

IIl. INDEPENDENT INTERVAL PROCESS
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2 $N¢P1(21)2,dz;. The point will be uniformly distributed
ne=([I"(x)[)= ) (1) along the chord, therefore if it falls on a chord of length
! 2 the probability that it lies a distandg,y + 8y] from the left

1 end is justéy/z;. To obtain the total probability we must
d1={1(x))= Enc(zl), (2)  sum over all chords witk>y, giving
Ne (® oy
1 ) =—°j dz;py(z21)2,=—, 9
dr=(1-100)= 5n(z2). € Q=7 |, dapi@)z,
Note that the results are true irrespective of correlations be- o) :E(l— ) (10)
tween successive chords. 1755 TP
Now consider the two-point correlation function which is
defined as Note thatQ,(0)=3n., as it should, since the probability
that a point lies within a distancéy (to the lef) of a down

S11(¥) = (1 (x)1(X2)). (49 crossing must bgn,dy.

_ ) ) _ Recall thatS;;(x) is the probability that two points a dis-
Stationarity of the procesgand isotropy in more than one (5ncex apart fall in phase 1. The chance that the second point
dimension implies that the average only depends BN  fs in phase Igiven that the first doeslepends on whether
=[x=xy|. To expressS; as a function ofp; andp; itis  he distance to the first up crossiggs greater or less than
necessary to derive some preliminary results. The method i$,e gistance. If y>x then the right-hand point falls in phase

adapted from Refl27]. Although the model is independent 1 \ith unit probability. Ify<x then the right-hand point falls

of any random field it is useful to describe the left-hand ends, phase 1 with probabilitR;(x—y). Thus we have

of chords in phase 1 and 2 as down crossings and up cross- )

ings, respectively(see Fig. 1 Consider the probability o X

Ru1(x) that a point at distanceto the right of an up crossing Sll(x):f dle(y)+f dyQu(Y)Rua(x—y). (11

(or right-hand end of a chord in phasg falls in phase 1. X 0

Suppose the chortbf phase 2 immediately to the right of

the down crossing has length. If z,>x then the point falls

in phase 2. Ifz,<x the chance that the point falls in phase 1

is Ry1(Xx—2,), whereRy4(y) is the probability that a point at

distancey to the right of a down crossing falls in phase 1. - -

Thus ASM:E _Ne M (12)
S 28°  1-pip,

Note thatS;1(0)= ¢, as it should sinceS;1(0) is just the
probability that a single point falls in phase 1. Taking
Laplace transforms we obtain

X
Rui(X)= fo d25P2(25)Ran (X = 23). (5) Two other correlation functions of the independent inter-
val process are important for later discussions. The first,
Now consider the converse problem fy;(x). Letz; bethe  Sca(X)=([1"(x1)[[1(x2)[), is the 1D analog of the surface-
length of the first chordof phase 1to the right of a down Vvoid correlation function which arises in the study of 3D
crossing. The probability that a point a distancéom the ~ porous material§1]. The second is the crossing-crossing
down crossing falls in phase 1 is unity4f>x and R, (x  correlation functionS..(x)=(|1"(x1)|[I"(x,)|) analogous to

—1z;) if z;<x, giving the surface-surface correlation functid. Again, stationar-
ity implies thatS.; and S.. depend only on the distance
_[- X =[Xp—Xy.
Ra1(x)= J; dz3py(zy) + fo d21py(21)Rus(x=21). (6) From the definition ofS;; we have
Taking Laplace transforms of both equations and solving we € €
_—  pa(1-py) wheree is small. The expression on the right-hand side is the

(7) " probability thatx, lies within a distances/2 (which we call
an e interva) of a crossing and that, lies in phase 1. With-
(1=py) out loss of generality, we consider the case>x;. Now
ﬁ;:#, (8)  there is an equal chance of the first point landing inean
S(1—-p1py2) interval of an up or down crossingrobability 3 en.). The
o probability thatx, falls in phase 1 is then eithd®,,(x) or
where f=f(s)=[,e %*f(x)dx denotes the usual Laplace Ry;(x). Hence, fore—0,
transform.
Next we need the probabilit®,(y) dy that an arbitrary
point will fall in phase 1 a distancgy,y+ éy] from the left
of the first down crossing on its right. The chance that the
point falls on a 1-chord of length[z;,z,+dz] is or, using Laplace transforms,

1=,
" s(1-pipy)

1
€Se1(X) =5 N[ Ry (%) + Ry (X)] (14)
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& _Nc (1-p)(1+py) different contexts. It is useful to briefly demonstrate these
c1=2—C = (15 connections. The Poisson-Boolean md@lof random two-
S 1-pip2 phase media has been widely studied and applied. In this

model, graingwhich may be of different shapes and sizes

Similarly we write the crossing-crossing correlation func- are placed at uncorrelated random points in sp@cethe

tion as grains may overlap For spherical inclusions this is just the
1 1 overlapping spheréor Swiss-cheesanodel[1]. For convex
ezscc(x)~< ‘ I X, + 7€~ I ( X175 e) grains of any shape or size, the chord-distribution function of
the phase exterior to the grainspgs(z) =\exp(—\z) where
1 1 N=s,/4¢,. Since the grains are uncorrelated in space and
X X+ 2€|~ I(xz— 56) > (16) convex it is clear that the length of successive chords along

any line through a realization of the model will be indepen-

where the expression on the right is clearly the probabilitydent. Therefore Eq(12) applies. Specializing to Boolean
that both points lie within are interval of a crossing. To models[p;=A/(\+s)] we recover the well known result
express this quantity in terms of the chord distributions sev{e.g., Ref[4])

eral additional functions are needed. R}y(x) be the prob- R R

ability that a point a distance from an up crossing falls in sS;1 1-p

ane interval of a down crossing. This can occur in two ways; b, - 1-pip,. (24)
either the first chord of phase 2 adjacent to the up crossing 12

has lengthe,=x, or zZ,<x in which case the point falls near gjnces,,(x) is known for many Boolean models, this result
a down crossing with probabilitRy4(X—z,), whereRyq4(Y) allows p,, to be calculated:
is the probability that a point at distangeto the right of a

down crossing is in ae interval of a down crossing. This is FA32= 1+s/\— ¢1/)\A511- (25)
expressed as

« Let us further specialize to the case of a 1D Boolean process
Rud(x):Ep2(X)+f dz,p,(2,)Rug(X—2,). (17)  Where the grains are rods with random lengths distributed
0 according to the cumulative distribution functidin(z). For
this model S;1(x) = p1exp{—\[g[1-¥(2)]dZ and the for-

The functionsR,,, Ry, are similarly defined and three addi- A .
uus du 4 dnula forp, becomes a well known result for the busy period

tional relations among the four functions can be derived an

solved to give in an M/G/ queue[20,30.
The independent interval process is useful in the interpre-
Rug= €Pa/(1—P1Py), (18 tation of small-angle x-ray scattering data. In R¢fs26] the
Fourier transform of12S;;/dx? was derived in terms of the
Ryu=€P1/(1— P1Ps), (19) Fourier transforms of the chord functions. The result can be

shown to be equivalent to E¢L2). Rice’s[23] formulas for
A & aa Ala Sy, for two different types of random telegraph signal can
Raa=Ruu= €p1p2/(1-p1p2). (20 Ziso be rederived using E€L2). In the next section we show
Now from the definition ofS.. it is clear that how the independent interval process can be used to derive
useful approximations of the chord functions for the single
) 1 level-cut Gaussian random fie{GRF model.
€°Scc(X)= Efnc[Ruu+ Rudt Raut Rydl (21

IV. CHORD FUNCTIONS OF LEVEL-CUT GAUSSIAN

ase—0. After taking Laplace transforms this gives RANDOM FIELDS
A Ne P1+ Pa-t 2P1Ds A Gaussian field is statistically specified in terms of a
CC=?C —_— (220 field-field correlation functipn(y(r_l)y(r2)>=g(|r?—r1|) _
1-p1p2 [23,31]. Here we consider isotropic stationary fields with

zero mean[(y(r))=0] and unit variancd (y*(r))=g(0)
=1]. Many methods exist for generating GRF’s with a given
g(r). For example, in 1D we have

A final expression which is useful for relating this work to
prior approaches is

X N .
Ruu(x)=efa(0+ jo dYRux=y)fay), @3 y(x)=21 a; cosk;x+b; sink;Xx, ki=$, (26)
=
where Ry,(x) is the probability that a point at distance
from a point in phase 1 falls within aa interval of an up Wherea; andb; are independent Gaussian random variables
crossing, and(x) is the probability distribution of “failure  with mean zero anda?)=(b?)=(27/T)F(k;). In the limit
times” discussed earlier. N,T—oe such thatN/T—o the correlation function ig(x)
Although this analysis of the independent interval pro-= [gF(k)coskXdx F(k) is called a spectral density. When

cess, and the results f8, andS;;, appear new, variants of F(k) is a wide or narrow distribution, the process is, respec-
Eq. (12) for S;; have actually been derived in several quitetively, said to be wide or narrow band. The 3D analog is
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N N relatively simple to evaluate; the functiofy,,, Ryq, and

N
yir= > > X Cmpekimn, (27 Ruq appearing in the integral equations E(fs7) and(23) are
I==Nm==Nn=-N quite complex for a nonzero threshdia2).
To evaluate the approximations for an arbitrary threshold

where  Kimp=(2a/T)(Ii+mj+nk) —and  Cmn=amn e have the following results:

+ibjmn. Fory real and(y)=0 we takec| n,=C_| _m —n
andcgoo=0. As aboveay, andbj,, have mean zero and

<aI2mn>:<b|2mn :%(ZW/T)SP(kImn)- In this case g(r) ¢1:l+}erf£, nC:Ze—(UZ),BZ, (31
=4~ 1[54mkp(K) sinkrdk. A two-dimensional random 2 2 \/E 77
field is shown in Fig. a).

A two-phase level-cut GRF model is specified by the mi- Sum 2 1 (9x dt B2 @)
crostructure indicator functioh(r)=H(8—y(r)), whereH 1= ¢1+ 5~ X — </
is the Heaviside step function. There are two very useful 2mJo 1-t° 1+t
properties of the Gaussian model. First the random field is
ergodic(ensemble averages equal spatial avernagesl sec- n. n. |vyB(1—9)
ond the variabley(r;) i=1,23... andtheir spatial deriva- Ser=5 t er W
tives[ Vy(r;), etc] are correlated Gaussian random variables
with known j_oint probab_ility distribution. This allows many g'ex — BY(1+9)] v{ 8 \/ﬁ
useful statistical properties of the thresholded mddeth as - > er g’ ,
S,,) to be calculated. 2my1-g v2|G] 1+g

In the preceding section we derived the properties of the (33

independent interval process in termsmf and p,. How-

ever, itis clear that if any two of the microstructure functions\yhere =/—g”(0) and |G|= 9 1-g%(x)]-[g'(x)]%
(P1, P2; S11; Sc1, Sec) are known the remainder can be The results fon, [23] andS;; [13] are well known, and the
determined by means of Eq4.2), (15), and(22). SinceSy;,  final expression foB,, can be evaluated using the method of

Sc1, andS;c can be calculated for the level-cut GRF model, Rice as follows. For the level-cut Gaussian random field, we
this allows an approximation to be derived for the chordpgye

functions. The accuracy of the results will then depend on

the validity of the hypothesis that successive chords of the Ser=(8(B—y(x )Y (x0)[H(B—y(X))). (34)
model are uncorrelate@r nearly s¢. For simplicity we con-
sider the case wherg,;; and S;; are known. Simultaneous

solutions of Eqs(12) and(15) then give The variablesv=[wy, W, ,W3]=[y(X1),y(X2),y' (x1)] have

Gaussian distributions with cross correlation matrix

s P eedan 5 e
gij =(Ww;)=G=| 9(X) 1 g'(x) | (39
ﬁ2=m. 9 0 —-g'(x) —g"(0)
Se1—SSuut ¢ for x=|X,—X| and x,>x;. If x;<xq, (y(X1)y'(X2))

Thi | b idered lizat ¢ =g’(|x|) but this does not affect the final result. To fiSg,
is result can be considered a generalization of a recerg&e must therefore evaluate

approximation developed independently by the authors o
Refs.[27] and [28]. In a study of the zero-threshold case
[wherep(z) =p1(z) = p,(2)] they found f j f dwas( B—w-H(B—w-)lw '
) (ﬂ 1) (B 2)| 3| (277)3/2|G|1/2
n.+s(2S;,—1) (36)

= , 30
nC—S(ZSM— 1) ( )

— (12w’ 1w

p=
The integrals extend over all space and the final factor is just
where S;y(x) =%+ (1/2m)arcsifig(x)]. This result is ob- the joi.nt probability density function ofv;. The result is
tained by substitutings, = ¢,=% and S,,=n./2 (which is  9iven in Eq.(33).

true for any symmetric mediuninto Egs.(28) and(29). The To obtainp it is necessary to invert Eq&28) and (29).
result provided an excellent approximation for the case!NiS can be done using a short and efficient algorifB3].
g(x) =[1/coshg/2)]9? (d=1,2,3). As previously notedp; needs to be known to around nine

Clearly other approximations can be obtained using theignificant figures to achieve four significant figure accuracy
independent interval process, and several have been previt the result[30]. To minimize cancellation errors in the
ously given. For example, Eq17) was obtained by McFad- numerators and save one integration, we rewrite E2R).
den[25] and Rice[32], and approximate forms of Eq23)  and(29) as
have been used to obtain the distribution of failure times
[22]. If the chords are uncorrelated all the methods will give R ézl_ S§CT\1
identical results. An advantage of approximati{80) and its Pr=——==. (37)
generalization Egs. (28) and (29)] is that S;; and S.; are Ne—S11—5§;
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i S 4sq.
_ St (39)
ne—SiitsSh
Wheresll(x) =S¢ (X)—3n.. The Laplace transfomél\’l(s)

andéfl(s) on the right-hand side of Eq$37) and (38) can
be evaluated using numerical quadrature.

To check the validity of the independent interval approxi- .
mation, we measure the chord distribution directly from re- 0.40¢

alizations of the thresholded model. This is simplend
minimizes finite-size effecjsin one dimension. A 1D ran-
dom procesy,(x) can be obtained from a 3D GRRK(r) by
takingy;(x) =ys(ro+ nx) wherer, is an arbitrary origin and
n is a unit vector with arbitrary orientation. Now; (x) can
be generated independentlyyf(r) by using the 1D defini-
tion for y(x) given in Eq.(26). To ensure thay(x) and
y1(X) are statistically identical they must shaygx). This is
true if F(k)=4x[sp(s)ds, whereF and p are, respec-

tively, the spectral densities of the 1D and 3D random fields. 0.00k
This shows thafF (k) must be a nondecreasing function for

1D random processes obtained from 3D random fields.

In the modeling of random media, the following Fourier

transform pairs[g(x) and p(k)=—F'(k)/(4wk)] have
proved useful:

X
g.=e ¥¢ Lt g) (39)
4
Fom————, 40
U1+ £2Kk2)2 49
gp=e"", (4D
szl_oe—(lm)kzlg' (42)
T
e XE(1 4] sin 2arx/d 43
ge=€ " (14XE) —— (43
d c c_
F.=—|tanlc_+tan tc, +——+ ,
¢ 2172( T 1+c? 1+c2)
2

For a finite number of crossings per unit lengtr specific
surface in three dimension# is necessary thag’(0)=0
[23]. For simplicity we restrict attention to the following
parameters which givey=\—g"(0)=1 um % (a) ¢
=1 um; (b lp=v2 um; and (c) &=y2 um, d

050 T S

0.30f

0.20

0.10}

0 2 4 6 8 10
@) z (um)
FIG. 2. Chord functions of single-cut Gaussian random fields at
volume fractiong;=0.2. The symbols are directly measured from
simulations, and the lines correspond to the independent interval
approximation. The modelsee Eqs(39)—(44)] are shown in the
top row with side length 40um: (&) ga(x), O; (b) gp(x), [J; (¢
9c(x), A. The chord functions correspond to the first-passage time
problem considered by Rice.

The largest deviations between simulation and the ap-
proximation are seen for the oscillatory correlation function
0:(x). We can investigate this “narrow-band” limit by tak-
ing £&— in g.(x), which gives

_sin27-rx/d
gd(X)—m, (45)
E d H 2m K 46
“=2."7a X “e

The results fomp; at volume fractionsp,=0.2, 0.5, and 0.8
are shown in Fig. 3, an&;(x) is shown in Fig. 4. At¢,
=0.5 the approximation is equivalent to that of R¢&¥,28§|.
The approximation breaks down after one wavelerthénd
actually falls below zerdgwhich is not inconsistent with the
derivation. This is because the procelsee Fig. 83)] has
approximately periodic regions, extending over several
wavelengths, which implies some level of correlation be-
tween adjacent chords. For exampleggt=0.5, a chord of
length ~3d is more likely to be followed by another of
approximately the same length than if it were randomly cho-
sen according to the probability distributipa(z). This con-

=4m/\J6 um. A cross section of the two-phase medium tradicts the assumptions of the independent interval approxi-

generated in each of the three cases is shown in Figs- 2

mation. The oscillations in the autocorrelation functi@ig.

2(c). We have checked the approximation in the volume4) clearly reflect appreciable order in the system.

fraction rangeg, €[0.1,0.9; results for¢,=0.2 are shown

Note that g4(x) represents the worst-cas@r most

in Fig. 2 (and are typical of those at other volume fractipns narrow-bangdl process corresponding to a 3D field since
The independent interval approximation is seen to providey(k)«d(27/d—Kk) (i.e., an infinitely narrow band pass fil-
remarkably accurate estimates of the measured chord disttier). However, the related 1D process corresponds to a low

butions.

pass filter(i.e., it is not strongly narrow bandThis shows
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FIG. 3. The phase 1 chord function of a level-cut GRF with 0. 0.5 1.0 L5 2.0
g(x)=sinkx)/(kx) (k=y3 wum) at three different volume frac- @ z (um)

tions. The inset shows the microstructuredat=0.2 (side length
40 pm). A 1D transect(length 150 um) of the random field is
shown in(a). The horizontal lines correspond to the threshold at
each volume fraction. The independent interval assumption brea
down because the process is nearly periodic in some regions.

FIG. 5. The independent interval approximation compared with
simulations of the chord functions for three distinct models based
n level-cut Gaussian random fields) Berk’s two-cut modelO;
) the intersection set of two two-cut models; (c) the union set
of two two-cut models/. The side length of the images is 1&6m.

that approximations valid for medium- and wide-band

Gaussian random processes are sufficient to reproduce t§&191e-cut random field model is not sufficiently general to

chord functions of 3D models based on random fields. Thanodel the microstructure of many interesting materials. To

failure of the independent interval approximation in this model the bicontinuous structure _Of mmroemulspnsz Berk
narrow-band limit is not critical for two reasons. First, the [13] suggested that phase 1 be defined as the region in space

modelg.(x) (with £>0, for which the approximation is rea- whereah<y(r)<,8, this i‘T’ rt]he s?—called two-cuft POQEFHQ.
sonable has been found more relevant to physical materialss(a)]' The two-cut mode as also proven useful in interpret-
than modelgy(x) (e.g., see Sec. VI Second, even in the ing conductivity and percolation behavior in polymer blends

worst case, the approximation remains useful out to oné?f’d']' Oé)en ceIILoam:st()e.g., aer(()jgcla')s;artl)d tk;]e porous nc_atwork f
wavelength. This may prove adequate for material charactef2! Sandstones have been modeled by the intersection sets o
ization two statistically identical(but independenttwo-cut fields
' [Fig. 5b)], and closed cell foams may be modeled by the
union of two such structurd$ig. 5c)] [8]. Our method can
V. EXTENSION TO MORE COMPLEX MODELS be simply extended to these problems.

So far our results have been concerned with the conven- For Berk’s[13] two-cut model, we have

tional first-time distributions associated with an arbitrary

threshold 8) of a Gaussian random process. However, the & zierfﬁ—lerfi (a7
1.0
&2 08
_el"_' [ nczﬂ(e_(l/2)ﬁz+e_(l/z)az), (48)
é 0.6 T
5 04]
I ool o g2 1J'g<x> d p(—az
E 0 ex
=t W 2n)e 112 1+t
= 0.0
2 2 2
o2b 2apt—a”—p p(—ﬂ
—2exg ——————| tex , (49
0 2 4 6 8 10 12 14 F{ 2(1-t?) 1+t (49)
x (Lm)
FIG. 4. The normalized two-point correlation functigiqg. Se1=fpptfpa=fap=faa: (50)

(32)] of the random model shown in Fig. 3. The strong oscillations
in S;1(x) correspond to periodic correlations in the microstructure.where
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2m1-g? 2 1-g? (@) (b)
a—pg g o .
X erf 51 (52 FIG. 6. A binarized image of a silver-tungsten compo§&s]
V2|G| Vy1-g (a) compared with a modé¢B6] based on a level-cut Gaussian ran-

. . . . dom field(b). The side length is 99.4«m. The parameters and the
Using these results we can directly apply the approximationy,qge| are chosen to reproduce the experimental two-point function
for the chord distributions. We use the field-field function gng chord-distribution functiotsee Fig. 7.

gp(X) with [,=12 wm and consider a “centered” two-cut

field (a=—p) at volume fractiong=0.2. The results are resylts of the independent interval approximation are com-
shown as circles in Fig. 5 and show very good agreemengared with simulations in Fig. 5. In general the approxima-

with simulations. tion is excellent. For<3 wm significant deviationgup to

To evaluate the chord functions of the intersection andjgog are seen between the calculated and simulated values
union sets we first derive their statistical properties. SUPPOSEf the chord distribution of phase D).

Q(x) and ¥ (x) are the indicator functions of two indepen-
dent, but statistically identical, models of random media with
propertiess, , N, Sy1, andS.;. A new model is obtained by VI. APPLICATION TO POROUS AND COMPOSITE

forming the intersection set & and'¥ which has indicator MATERIALS

H |
func2t|on |(>I<)=Q(X)><‘I’(X)- Clearly ¢;=(1)=(Q)}(¥) To study the properties of a random medium it is impor-
=¢1 and n.=([I')=(|Q"¥+Q¥'[)=(|Q'|[¥+Q[¥'])  tant to have an accurate model of the microstructure. If the
=2(Q)(|Q'[)=2¢n.. The relation [Q'¥+QW¥’'|  physical mechanisms responsible for the evolution of the mi-

=|Q'|¥+Q|¥'| is true everywhere except where the inter- crostructure are not well knowfor difficult to simulaté an
face of ¥ and(} intersects. The contribution of this error to empirically based statistical model may be useful
the final result is negligible. A similar reasoning can be ap{8-10,12,16 The level-cut GRF model is well suited to this
plied to findS;; andS}; , as well as corresponding results for approach because of its generality: the morphology of the
an analogously defined union set with indicator functionmodel may be “tuned” to some degree to match that of the
[(X)=Q(X) +T(X) —Q(X) X¥(x). In summary the results random medium. The simplest and most common morpho-
needed to apply the approximation for the chord-distributionlogical quantities are the densitgr porosity and the two-

function are point correlation function, which can both be measured from
| 5 a cross-sectional image. It is possible to generate a GRF
$1=(1)%, (53)  model with approximately the same statistical properties by
| an appropriate choice of parametg8sl2,1§.
Ne=2¢nc, (59 As an example we show a binarized image of a tungsten-
silver compositd 35] along side a single-cut GRF model in
S;,=(Sw? (55  Fig. 6. The parameters of the model were derived in Ref.
[36] as follows. The level-cut parameter is taken As
S.1=2S1:S:1, (56)  =-0.84 so that the silver volume fractiof;=0.2 is ex-
actly that of the compositEEq. (31)]. The random field is
B7=d1(2— 1), (57)  generated using.(k) [Eq. (44)]. The length scales of the
random fieldé=2.15 um andd=13.0 um are chosertby
ng=2(1— d1)Ne, (58) a nonlinear least squares metheo that the two-point cor-
relation function of the model matches that of the composite.
Sllle 2(1)%+2S1(1—2¢1) +(S10)?, (59 The theoretical and experimental valuesSpf(r) (which are

practically indistinguishab)eare shown in the inset of Fig 7.
Se1=2Sc1(1— 21+ Syp) +2n(p1— Sy1). (600  Since the volume fraction and two-point function do not
uniquely specify a random microstructuiiee., many differ-
Here the unsuperscripted microstructure properties correasnt models may reproduce these morphological quantities
spond to the primary modef3 and¥ and the superscripted [8]), it is necessary to test the results. The chord functions
(I or U) functions are to be used in Eq28) and(29). are ideal in this regard as they provide a strong signature of
Although Eqs(53)—(60) are true for any independent ran- microstructure and can be measured from a cross-sectional
dom models, we restrict attention to the case where the primage. The independent interval approximation and experi-
mary sets are obtained from Berk's modsee Eqs(47)—-  mental data are compared in Fig. 7. The reasonable agree-
(50) and Fig. %a)]. As above we consider centered modelsment between theory and experiment indicates that the
(a=—p) at volume fractionp, = 0.2 obtained from random model is capturing important features of the tungsten-silver
fields with correlation functiorgy(x) (Io=+2 wm). The  composite.
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FIG. 7. The main graph shows a comparison between the chord FIG. 9. The chord functions measured from a 3D image of Fon-
functions of a silver-tungsten compositgymbolg and the results tainebleau sandstorieymbols compare well with the results of the
of the independent interval approximation for a level-cut Gaussianndependent interval approximatigimain graph for a Gaussian
random field model. The composite and model are shown in Fig. 6tandom field model. The inset shows the autocorrelation function
The inset compares the experimental and model autocorrelatiom(x)=[Sll(x)—dbf]/(qﬁl—qﬁ). Three-dimensional realizations of
function y(x) =[S11(X) — $21/(1— ¢2). the sandstone and the model are shown in Figs. 10 and 11, respec-

tively.

A second example is provided by a digitized image of
Fontainebleau sandstone obtained by x-ray tomographsigorithm was used to determine that 98.8% of the pore
[37,38. To mimic the granular character of the sandstonespace in the model is connected to the outer faces, which
[Fig. 8@] we use a model based on the intersection set ofompares well with 99.6% for the sandstone. Therefore the
n(=5) single-cut Gaussian random fields. The result ismodel is also able to capture the interconnections of the
shown in Fig. 8b). To match the porosity of the model with sandstone pores.
that of the sandstonep(=0.154), we take3=0.48 for each
of the five primary random field models. This corresponds to
¢1=(0.154)}5. The experimental two-point function is re-
produced by choosing=51.9 um and d=272 um in We have derived a semianalytic approximation for the
model g.(r) (by a least squares method’he independent chord-distribution functionsg; andp,) of 3D random me-
interval approximation for the chord functions is calculateddia. The approximation is based on the assumption that suc-
using the relationsS};=(S;)" and S,;=n(S;)" 'S,;  cessive chord lengths are uncorrelated. The result can be
[which are a straightforward extension of Eq85 and applied to models for which the two-poinS{;) and 1D
(56)]. The results are shown in Fig. 9. The model is able to*‘surface-void” (S.;) correlation functions can be evaluated.
mimic the two-point function extremely well, and the chord The calculation 0of5;; andS.; is generally much easier than
functions with good accuracy. This provides evidence thatalculation ofp; and p,. The result is exact for Boolean
the model is reasonable. 3D images of the model and sand-
stone microstructures are shown in Figs. 10 and 11. The
sandstone appears more well connected than the model, the
model showing more isolated pores. This is actually an arti-
fact of the method used to plot the pore-solid interface. An

VIl. CONCLUSION

FIG. 8. A cross section of Fontainebleau sandstmecom-
pared with a mod€36] based on the intersection set of five level-
cut Gaussian random fieldb). The side length is 2.18 mm. The FIG. 10. 3D representation of Fontainebleau sandstone sample
statistical properties of the sandstone and model are compared obtained by x-ray tomograpHy7,38. The pore space is shown as
Fig. 9. solid to aid visualization. The side length of the image is 9%60.
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measured from cross-sectional images; the two-point corre-
lation function does not necessarily provide sufficient infor-
mation, and good approximations for the chord functions are
very useful. In this context it is possible to apply the approxi-
mation confidently if the two-point correlation function ex-
hibits no(or weak oscillations. To demonstrate the applica-
tion of our results we have compared the approximation to
experimental data obtained from images of a tungsten-silver
composite and a porous sandstone.

In order to derive the chord function approximation we
studied the independent interval process in detail. We have
shown that the process underlies the derivation, and provides
useful links between, important results in many different
fields. The general treatment of the process makes clear the
relation between various approximations for different first-
passage times made in signal theory, the analysis of compo-

FIG. 11. A sandstone model based on Gaussian random fieldd€Nt failure anfj persistence times in coarsening. From the
(cf. Fig. 10. The independent interval approximation for the chord €xpressions fop; [Egs.(28) and(29)] it is simple to obtain
distribution shows reasonable agreement with experimental dathe lineal-path ~ functions as Li=£ "{¢;/s—n 1
(Fig. 9. Many of the apparently isolated regions of pore space f)i(s)]/232}. Fori=1 this is just the “survival probabil-
(shown as soliflare artifacts of the plotting procedure. ity” in the context of random processes. Similarly the prob-

. . . , ) ability density of “time to failure” given that=0 falls in a
models with convex grains since the assumption of indepen- f ion isf. = £~ 1 1—7 /2 Th
dent intervals is true. We have applied the approximation to21¢ region isfy=L "{nc[1—p,(s)]/2¢1s}. These expres-

the single level-cut Gaussian random field model of randony'oNs can be myert_ed in the same way @s Due to its
materials. In this case the chord functions correspond t .pparent generality it would be useful to explore the proper-

Rice’s first-passage time distribution for random noise. The'€S of the process further. Extensions to include correlation
approximation is very accurate for wide-band random fields etween the chord lengths and the development of a 3D ana-

but loses accuracy after one “wavelength” of the field for log would be useful future studies.
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