153 research outputs found
Deployment of mating disruption dispensers before and after first seasonal male flights for the control of Aonidiella aurantii in citrus
The rejection of citrus fruit caused by infestations of the California red scale (CRS), Aonidiella aurantii (Maskell) (Hemiptera: Diaspididae), raises concerns about its management. This fact has led to the introduction of new integrated control methods in citrus orchards, including the implementation of techniques based on pheromones. Previous works described efficient mating disruption pheromone dispensers to control A. aurantii in the Mediterranean region. The main aims of the present study were to adjust the timing of dispenser applications and study the importance of controlling the early first generation of A. aurantii by testing two different application dates: before and after the first CRS male flight. The efficacy of the different mating disruption strategies was tested during 2010 in an experimental orchard and these results were confirmed during 2011 in a commercial citrus farm. Results showed that every mating disruption strategy achieved significantly lower male captures in monitoring pheromone traps compared with untreated plots, as well as mean fruit infestation reductions of about 80 %. The control of the first CRS generation is not essential for achieving a good efficacy as demonstrated in two locations with different pest pressure. The late application of MD dispensers before the second CRS male flight has proven to be effective, suggesting a new advantageous way to apply mating disruption.The authors want to thank Fernando Alfaro from Denia, Antonio Caballero, and Javier Macias from Rio Tinto Fruit S.A. (Huelva, Spain) for field support. We also thank Ecologia y Proteccion Agricola SL for the pheromone supply. This work has been funded by the Spanish Ministry of Science and Innovation (project AGL2009-10725) and Agroalimed Foundation. The translation of this paper was funded by the Universidad Politecnica de Valencia (Spain).Vacas González, S.; Alfaro Cañamás, C.; Primo Millo, J.; Navarro-Llopis, V. (2015). Deployment of mating disruption dispensers before and after first seasonal male flights for the control of Aonidiella aurantii in citrus. Journal of Pest Science. 88(2):321-329. https://doi.org/10.1007/s10340-014-0623-1S321329882Avidov Z, Balshin M, Gerson U (1970) Studies on Aphytis coheni, a parasite of the California red scale, Aonidiella aurantii in Israel. Biocontrol 15:191–207Barzakay I, Hefetz A, Sternlicht M, Peleg BA, Gokkes M, Singer G, Geffen D, Kronenberg S (1986) Further field trials on management of the California red scale, Aonidiella aurantii, by mating disruption with its sex-pheromone. Phytoparasitica 14:160–161Bedford ECG (1996) Problems which we face in bringing red scale, Aonidiella aurantii (Maskell), under biological control in citrus in South Africa. Proc Int Soc Citriculture 1:485–492Campos-Rivela JM, Martínez-Ferrer MT, Fibla-Queralt JM (2012) Population dynamics and seasonal trend of California red scale (Aonidiella aurantii Maskell) in citrus in Northern Spain. Span J Agric Res 10:198–208Collins PJ, Lambkin TM, Bodnaruk P (1994) Suspected resistance to methidation in Aonidiella aurantii (Maskell) (Homoptera: diaspididae) from Queensland. J Aust Entomol Soc 33:325–326Corma A, Muñoz-Pallares J, Primo-Yufera E (1999) Production of semiochemical emitters having a controlled emission speed which are based on inorganic molecular sieves. World Patent WO9944420Corma A, Muñoz-Pallares J, Primo-Yufera E (2000) Emitter of semiochemical substances supported on a sepiolite, preparation process and applications. World Patent WO0002448DeBach P (1959) New species and strains of Aphytis (Hymenoptera: Eulophidae) parasitic on the California red scale, Aonidiella aurantii (Mask.), in the Orient. Ann Entomol Soc Am 52:354–362DeBach P, Argyriou L (1967) The colonization and success in Greece of some imported Aphytis spp. (Hymenoptera: Aphelinidae) parasitic on citrus scale insects (Homoptera: Diaspididae). Biocontrol 12:325–342Desneux N, Decourtye A, Delpuech JM (2007) The sublethal effects of pesticides on beneficial arthropods. Ann Rev Entomol 52:81–106Diari Oficial de la Comunitat Valenciana (DOCV) (2008) DOCV no. 5901, 26. Resolution 27 October 2008 of Consellería de Agricultura, Pesca y Alimentación; November 2008. http://www.docv.gva.es/datos/2008/11/26/pdf/2008_13692.pdfDomínguez-Ruiz J, Sanchis J, Navarro-Llopis V, Primo J (2008) A new long-life trimedlure dispenser for Mediterranean fruit fly. J Econ Entomol 101:1325–1330Eliahu M, Blumberg D, Horowitz AR, Ishaaya I (2007) Effect of pyriproxyfen on developing stages and embryogenesis of California red scale (CRS), Aonidiella aurantii. Pest Manag Sci 63:743–746Furness G, Buchanan G, George R, Richardson N (1983) A history of the biological and integrated control of red scale, Aonidiella aurantii on citrus in the lower Murray Valley of Australia. Biocontrol 28:99–212Grafton-Cardwell EE, Gu P (2003) Conserving vedalia beetle, Rodolia cardinalis (Mulsant) (Coleoptera : Coccinellidae), in citrus: a continuing challenge as new insecticides gain registration. J Econ Entomol 96:1388–1398Grafton-Cardwell EE, Reagan CA (1995) Selective use of insecticides for control of armored scale (Homoptera: Diaspididae) in San-Joaquin Valley California citrus. J Econ Entomol 88:1717–1725Grafton-Cardwell EE, Vehrs SLC (1995) Monitoring for organophosphate-resistant and carbamate-resistant armored scale (Homoptera: Diaspididae) in San-Joaquin Valley citrus. J Econ Entomol 88:495–504Grafton-Cardwell EE, Lee JE, Stewart JR, Olsen KD (2006) Role of two insect growth regulators in integrated pest management of citrus scales. J Econ Entomol 99:733–744Grout TG, Richards GI (1991a) Effect of buprofezin applications at different phenological times on California red scale (Homoptera: Diaspididae). J Econ Entomol 84:1802–1805Grout TG, Richards GI (1991b) Value of pheromone traps for predicting infestations of red scale, Aonidiella aurantii (Maskell) (Homoptera: Diaspididae), limited by natural enemy activity and insecticides used to control citrus thrips, Scirtothrips aurantii Faure (Thysanoptera: Thripidae). J Appl Entomol 111:20–27Grout TG, Du Toit WJ, Hofmeyr JH, Richards GI (1989) California red scale (Homoptera: Diaspididae) phenology on citrus in South Africa. J Econ Entomol 82:793–798Hefetz A, Kronengerg S, Peleg BA, Bar-zakay I (1988) Mating disruption of the California red scale Aonidiella aurantii (Homoptera: Diaspididae). In: Proceeding 6th International Citrus Congress, Tel Aviv (Israel), pp 1121–1127Hernández-Penadés P, Rodríguez-Reina JM, García-Marí F (2002) Umbrales de tratamiento para cóccidos diaspídidos en cítricos. Bol San Veg Plagas 28:469–478Hothorn T, Bretz F, Westfall P (2008) Simultaneous Inference in General Parametric Models. Biometrical J 50:346–363Ioratti C, Anfora G, Tasin M, De Cristofaro A, Witzgall P, Lucchi A (2011) Chemical ecology and management of Lobesia botrana (Lepidoptera: Tortricidae). J Econ Entomol 104:1125–1137Kehat M, Anshelevich L, Harel M, Dunkelblum E (1995) Control of the codling moth (Cydia pomonella) in apple and pear orchards in Israel by mating disruption. Phytoparasitica 23:285–296Kennett CE, Hoffmann RW (1985) Seasonal development of the California red scale (Homoptera: Diaspididae) in San Joaquin Valley citrus based on degree-day accumulation. J Econ Entomol 78:73–79Levitin E, Cohen E (1998) The involvement of acetylcholinesterase in resistance of the California red scale shape Aonidiella aurantii to organophosphorus pesticides. Entomol Exp Appl 88:115–121Lykouressis D, Perdikis D, Samartzis D, Fantinou A, Toutouzas S (2005) Management of the pink bollworm Pectinophora gossypiella (Saunders) (Lepidoptera: Gelechiidae) by mating disruption in cotton fields. Crop Prot 24:177–183McLaren IW, Buchanan GA (1973) Parasitism by Aphytis chrysomphali Mercet and A. melinus Debach of Californian red scale, Aonidiella aurantii (Maskell), in relation to seasonal availability of suitable stages of the scale. Austr J Zool 21:111–117Moreno DS, Kennett CE (1985) Predictive year-end California red scale (Homoptera: Diaspididae) orange fruit infestations based on catches of males in the San-Joaquin Valley. J Econ Entomol 78:1–9Moreno DS, Luck RF (1992) Augmentative releases of Aphytis melinus (Hymenoptera: Aphelinidae) to suppress California red scale (Homoptera: Diaspididae) in southern California lemon orchards. J Econ Entomol 85:1112–1119Pekas A, Aguilar A, Tena A, García-Marí F (2010) Influence of host size on parasitism by Aphytis chrysomphali and A. melinus (Hymenoptera: Aphelinidae) in Mediterranean populations of California red scale Aonidiella aurantii (Hemiptera: Diaspididae). Biol Control 55:132–140Rill S, Grafton-Cardwell EE, Morse JG (2007) Effects of pyriproxyfen on California red scale (Hemiptera: Diaspididae) development and reproduction. J Econ Entomol 100:1435–1443Rodrigo E, Troncho P, García-Marí F (1996) Parasitoids (Hymenoptera: Aphelinidae) of three scale insects (Homoptera: Diaspididae) in a citrus grove in Valencia, Spain. Entomophaga 41:77–94Roelofs WL, Gieselmann MJ, Cardé AM, Tashiro H, Moreno DS, Henrick CA, Anderson RJ (1977) Sex-pheromone of California red scale, Aonidiella aurantii. Nature 26:698–699Rongai D, Cerato C, Lazzeri L, Palmieri S, Patalano G (2008) Vegetable oil formulation as biopesticide to control California red scale (Aonidiella aurantii Maskell). J Pest Sci 81:179–185Sorribas JJ, Rodríguez R, Rodrigo E, García-Marí F (2008) Niveles de parasitismo y especies de parasitoides del piojo rojo de california Aonidiella aurantii (Hemiptera: Diaspididae) en cítricos de la Comunidad Valenciana. Bol San Veg Plagas 34:201–210Sorribas J, van Baaren J, Garcia-Marí F (2012) Effects of climate on the introduction, distribution and biotic potential of parasitoids: applications to biological control of California red scale. Biol Control 62:103–112Staten RT, Flint HM, Weddle RC, Quintero E, Zarate RE, Finell CM, Hernandes M, Yamamoto A (1987) Pink bollworm (Lepidoptera: Gelechiidae): large-scale field trials with a high-rate gossyplure formulation. J Econ Entomol 80:1267–1271Tashiro H, Chambers DL (1967) Reproduction in the California Red Scale, Aonidiella aurantii (Homoptera: Diaspididae). I. Discovery and extraction of a female sex pheromone. Ann Entomol Soc Am 60:1166–1170Tena A, Llácer E, Urbaneja A (2013) Biological control of a non-honeydew producer mediated by a distinct hierarchy of honeydew quality. Biol Control 67:117–122University of California (1991) Integrated pest management for citrus. University of California, BerkeleyVacas S, Alfaro C, Navarro-Llopis V, Primo J (2009) The first account of the mating disruption technique for the control of California red scale Aonidiella aurantii Maskell (Homoptera: Diaspididae) using new biodegradable dispensers. Bull Entomol Res 99:415–423Vacas S, Alfaro C, Navarro-Llopis V, Primo J (2010) Mating disruption of California red scale, Aonidiella aurantii Maskell (Homoptera: Diaspididae), using biodegradable mesoporous pheromone dispensers. Pest Manag Sci 66:745–751Vacas S, Vanaclocha P, Alfaro C, Primo J, Verdú MJ, Urbaneja A, Navarro-Llopis V (2011) Mating disruption for the control of Aonidiella aurantii Maskell (Hemiptera: Diaspididae) may contribute to increased effectiveness of natural enemies. Pest Manag Sci 68:142–148Vanaclocha P, Vacas S, Alfaro C, Primo J, Verdú MJ, Navarro-Llopis V, Urbaneja A (2012) Life history parameters and scale-cover surface area of Aonidiella aurantii are altered in a mating disruption environment: implications for biological control. Pest Manag Sci 68:1092–1097Vanaclocha P, Vidal-Quist C, Oheix S, Montón H, Planes L, Catalán J, Tena A, Verdú MJ, Urbaneja A (2013) Acute toxicity in laboratory tests of fresh and aged residues of pesticides used in citrus on the parasitoid Aphytis melinus. J Pest Sci 86:329–336Yarom I, Blumberg D, Ishaaya I (1988) Effects of buprofezin on California red scale (Homoptera: Diaspididae) and Mediterranean black scale (Homoptera: Coccidae). J Econ Entomol 81:1581–1585Yust HR, Nelson HD, Busbey RL (1943) Comparative susceptibility of two strains of California red scale to HCN, with special reference to the inheritance of resistance. J Econ Entomol 36:744–74
Model-Based Methods for Assessment, Learning, and Instruction: Innovative Educational Technology at Florida State University
Abstract In this chapter, we describe our research and development efforts relating to eliciting, representing, and analyzing how individuals and small groups conceptualize complex problems. The methods described herein have all been devel-oped and are in various states of being validated. In addition, the methods we describe have been automated and most have been integrated in an online model-based set of tools called HIMATT (Highly Interactive Model-based Assessment Tools and Technologies; available for research purposes a
Finishing the euchromatic sequence of the human genome
The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead
Evaluation of appendicitis risk prediction models in adults with suspected appendicitis
Background
Appendicitis is the most common general surgical emergency worldwide, but its diagnosis remains challenging. The aim of this study was to determine whether existing risk prediction models can reliably identify patients presenting to hospital in the UK with acute right iliac fossa (RIF) pain who are at low risk of appendicitis.
Methods
A systematic search was completed to identify all existing appendicitis risk prediction models. Models were validated using UK data from an international prospective cohort study that captured consecutive patients aged 16–45 years presenting to hospital with acute RIF in March to June 2017. The main outcome was best achievable model specificity (proportion of patients who did not have appendicitis correctly classified as low risk) whilst maintaining a failure rate below 5 per cent (proportion of patients identified as low risk who actually had appendicitis).
Results
Some 5345 patients across 154 UK hospitals were identified, of which two‐thirds (3613 of 5345, 67·6 per cent) were women. Women were more than twice as likely to undergo surgery with removal of a histologically normal appendix (272 of 964, 28·2 per cent) than men (120 of 993, 12·1 per cent) (relative risk 2·33, 95 per cent c.i. 1·92 to 2·84; P < 0·001). Of 15 validated risk prediction models, the Adult Appendicitis Score performed best (cut‐off score 8 or less, specificity 63·1 per cent, failure rate 3·7 per cent). The Appendicitis Inflammatory Response Score performed best for men (cut‐off score 2 or less, specificity 24·7 per cent, failure rate 2·4 per cent).
Conclusion
Women in the UK had a disproportionate risk of admission without surgical intervention and had high rates of normal appendicectomy. Risk prediction models to support shared decision‐making by identifying adults in the UK at low risk of appendicitis were identified
- …