796 research outputs found

    A SAURON study of dwarf elliptical galaxies in the Virgo Cluster

    Full text link
    Dwarf elliptical galaxies are the most common galaxy type in nearby galaxy clusters, yet they remain relatively poorly studied objects and many of their basic properties have yet to be quantified. In this contribution we present the preliminary results of a study of 4 Virgo and 1 field galaxy obtained with the SAURON integral field unit on the William Herschel Telescope (La Palma). While traditional long-slit observations are likely to miss more complicated kinematic features, with SAURON we are able to study both kinematics and stellar populations in two dimensions, obtaining a much more detailed view of the mass distribution and star formation histories.Comment: 2 pages, 1 figure; to appear in the proceedings of the conference "A Universe of dwarf galaxies" (Lyon, June 14-18, 2010

    Spectroscopic characterisation of the stellar content of ultra diffuse galaxies

    Full text link
    Understanding the peculiar properties of Ultra Diffuse Galaxies (UDGs) via spectroscopic analysis is a challenging task requiring very deep observations and exquisite data reduction. In this work we perform one of the most complete characterisations of the stellar component of UDGs to date using deep optical spectroscopic data from OSIRIS at GTC. We measure radial and rotation velocities, star formation histories (SFH) and mean population parameters, such as ages and metallicities, for a sample of five UDG candidates in the Coma cluster. From the radial velocities, we confirm the Coma membership of these galaxies. We find that their rotation properties, if detected at all, are compatible with dwarf-like galaxies. The SFHs of the UDG are dominated by old (~ 7 Gyr), metal-poor ([M/H] ~ -1.1) and alpha-enhanced ([Mg/Fe] ~ 0.4) populations followed by a smooth or episodic decline which halted ~ 2 Gyr ago, possibly a sign of cluster-induced quenching. We find no obvious correlation between individual SFH shapes and any UDG morphological properties. The recovered stellar properties for UDGs are similar to those found for DDO44, a local UDG analogue resolved into stars. We conclude that the UDGs in our sample are extended dwarfs whose properties are likely the outcome of both internal processes, such as bursty SFHs and/or high-spin haloes, as well as environmental effects within the Coma cluster.Comment: Accepted for publication in MNRA

    The Fornax Deep Survey with VST. VIII. Connecting the accretion history with the cluster density

    Full text link
    This work is based on deep multi-band (g, r, i) data from the Fornax Deep Survey with VST. We analyse the surface brightness profiles of the 19 bright ETGs inside the virial radius of the Fornax cluster. The main aim of this work is to identify signatures of accretion onto galaxies by studying the presence of outer stellar halos, and understand their nature and occurrence. Our analysis also provides a new and accurate estimate of the intra-cluster light inside the virial radius of Fornax. We performed multi-component fits to the azimuthally averaged surface brightness profiles available for all sample galaxies. This allows to quantify the relative weight of all components in the galaxy structure that contribute to the total light. In addition, we derived the average g-i colours in each component identified by the fit, as well as the azimuthally averaged g-i colour profiles, to correlate them with the stellar mass of each galaxy and the location inside the cluster. We find that in the most massive and reddest ETGs the fraction of light in, probably accreted, halos is much larger than in the other galaxies. Less-massive galaxies have an accreted mass fraction lower than 30%, bluer colours and reside in the low-density regions of the cluster. Inside the virial radius of the cluster, the total luminosity of the intra-cluster light, compared with the total luminosity of all cluster members, is about 34%. Inside the Fornax cluster there is a clear correlation between the amount of accreted material in the stellar halos of galaxies and the density of the environment in which those galaxies reside. By comparing this quantity with theoretical predictions and previous observational estimates, there is a clear indication that the driving factor for the accretion process is the total stellar mass of the galaxy, in agreement with the hierarchical accretion scenario.Comment: 18 pages, 10 figures. Accepted for publication in A&

    Carbon stars in the X-shooter Spectral Library

    Get PDF
    We provide a new collection of spectra of 35 carbon stars obtained with the ESO/VLT X-shooter instrument as part of the X-shooter Spectral Library project. The spectra extend from 0.3μ\mum to 2.4μ\mum with a resolving power above \sim 8000. The sample contains stars with a broad range of (J-K) color and pulsation properties located in the Milky Way and the Magellanic Clouds. We show that the distribution of spectral properties of carbon stars at a given (J-K) color becomes bimodal (in our sample) when (J-K) is larger than about 1.5. We describe the two families of spectra that emerge, characterized by the presence or absence of the absorption feature at 1.53μ\mum, generally associated with HCN and C2_2H2_2. This feature appears essentially only in large-amplitude variables, though not in all observations. Associated spectral signatures that we interpret as the result of veiling by circumstellar matter, indicate that the 1.53μ\mum feature might point to episodes of dust production in carbon-rich Miras.Comment: 29 pages, 21 figures, 9 tables, Accepted for publication in A&

    Minor axis kinematics of 19 S0-Sbc bulges

    Full text link
    We present minor axis kinematic profiles for a well-studied sample of 19 early- to intermediate-type disk galaxies. We introduce, for the first time, the use of single-burst stellar population (SSP) models to obtain stellar velocities, velocity dispersions and higher order Gauss-Hermite moments (h3,h4) from galaxy spectra in the near-infrared Ca II triplet region. SSP models, which employs the synthetic spectra of Vazdekis et al. 2003, provide a means to address the template-mismatch problem, and are shown to provide as good or better fits as traditional stellar templates. We anticipate the technique to be of particular use for high-redshift galaxy kinematics. We give the measurement of a recently defined CaT* index Cenarro et al. 2001a, and describe the global properties of the bulge kinematics as derived from the kinematic profiles. We detect small-amplitude minor-axis rotation, generally due to inner isophotal twists as a result of slightly triaxial bulges or misaligned inner disks; such inner features do not show peculiar colors or distinct CaT* index values. Velocity dispersion profiles, which extend well into the disk region, show a wide range of slopes. Flattened bulges tend to have shallower velocity dispersion profiles. The inferred similarity of bulge and disk radial velocity dispersions supports the interpretation of these bulges as thickened disks.Comment: 18 pages, 28 figures (9 images in main body, 19 low resolution images in appendix A), the preprint with high resolution images can be downloaded from http://astro.nottingham.ac.uk/~jfalcon/galaxies.php (2.6MB). Accepted for publication in A&

    Quantifying Resonant Structure in NGC 6946 from Two-dimensional Kinematics

    Full text link
    We study the two-dimensional kinematics of the H-alpha-emitting gas in the nearby barred Scd galaxy, NGC 6946, in order to determine the pattern speed of the primary m=2 perturbation mode. The pattern speed is a crucial parameter for constraining the internal dynamics, estimating the impact velocities of the gravitational perturbation at the resonance radii, and to set up an evolutionary scenario for NGC 6946. Our data allows us to derive the best fitting kinematic position angle and the geometry of the underlying gaseous disk, which we use to derive the pattern speed using the Tremaine-Weinberg method. We find a main pattern speed Omega_p=22 km/s/kpc, but our data clearly reveal the presence of an additional pattern speed Omega_p=47 km/s/kpc in a zone within 1.25 kpc of the nucleus. Using the epicyclic approximation, we deduce the location of the resonance radii and confirm that inside the outer Inner Lindblad Resonance radius of the main oval, a primary bar has formed rotating at more than twice the outer pattern speed. We further confirm that a nuclear bar has formed inside the Inner Lindblad Resonance radius of the primary bar, coinciding with the inner Inner Lindblad Resonance radius of the large-scale m=2 mode oval.Comment: Accepted for publication in ApJ Letter
    corecore