13,835 research outputs found
Rubber friction on (apparently) smooth lubricated surfaces
We study rubber sliding friction on hard lubricated surfaces. We show that
even if the hard surface appears smooth to the naked eye, it may exhibit short
wavelength roughness, which may give the dominant contribution to rubber
friction. That is, the observed sliding friction is mainly due to the
viscoelastic deformations of the rubber by the substrate surface asperities.
The presented results are of great importance for rubber sealing and other
rubber applications involving (apparently) smooth surfaces.Comment: 7 pages, 15 figure
Time Double-Slit Interference in Tunneling Ionization
We show that interference phenomena plays a big role for the electron yield
in ionization of atoms by an ultra-short laser pulse. Our theoretical study of
single ionization of atoms driven by few-cycles pulses extends the
photoelectron spectrum observed in the double-slit experiment by Lindner et al,
Phys. Rev. Lett. \textbf{95}, 040401 (2005) to a complete three-dimensional
momentum picture. We show that different wave packets corresponding to the same
single electron released at different times interfere, forming interference
fringes in the two-dimensional momentum distributions. These structures
reproduced by means of \textit{ab initio} calculations are understood within a
semiclassical model.Comment: 7 pages, 5 figure
Evidence for the absence of regularization corrections to the partial-wave renormalization procedure in one-loop self energy calculations in external fields
The equivalence of the covariant renormalization and the partial-wave
renormaliz ation (PWR) approach is proven explicitly for the one-loop
self-energy correction (SE) of a bound electron state in the presence of
external perturbation potentials. No spurious correctio n terms to the
noncovariant PWR scheme are generated for Coulomb-type screening potentia ls
and for external magnetic fields. It is shown that in numerical calculations of
the SE with Coulombic perturbation potential spurious terms result from an
improper treatment of the unphysical high-energy contribution. A method for
performing the PWR utilizing the relativistic B-spline approach for the
construction of the Dirac spectrum in external magnetic fields is proposed.
This method is applied for calculating QED corrections to the bound-electron
-factor in H-like ions. Within the level of accuracy of about 0.1% no
spurious terms are generated in numerical calculations of the SE in magnetic
fields.Comment: 22 pages, LaTeX, 1 figur
Loop-after-loop contribution to the second-order Lamb shift in hydrogenlike low-Z atoms
We present a numerical evaluation of the loop-after-loop contribution to the
second-order self-energy for the ground state of hydrogenlike atoms with low
nuclear charge numbers Z. The calculation is carried out in the Fried-Yennie
gauge and without an expansion in Z \alpha. Our calculation confirms the
results of Mallampalli and Sapirstein and disagrees with the calculation by
Goidenko and coworkers. A discrepancy between different calculations is
investigated. An accurate fitting of the numerical results provides a detailed
comparison with analytic calculations based on an expansion in the parameter Z
\alpha. We confirm the analytic results of order \alpha^2 (Z\alpha)^5 but
disagree with Karshenboim's calculation of the \alpha^2 (Z \alpha)^6 \ln^3(Z
\alpha)^{-2} contribution.Comment: RevTex, 19 pages, 4 figure
Self-Policing: Dissemination and Adoption of Police Eyewitness Policies in Virginia
Professional policing organizations emphasize the importance of the adoption of sound police policies and procedures, but traditionally doing so has been left to individual agencies. State and local government typically does not closely regulate police, and neither federal constitutional rulings nor state law typically sets out in any detail the practices that police should follow. Thus, law enforcement agencies must themselves draft and disseminate policy. This paper presents the results of studies used to assess the adoption of eyewitness identification policies by law enforcement agencies in Virginia. Policymakers were focused on this problem because Virginia experienced a series of DNA exonerations in cases involving eyewitness misidentifications. In 2005, lawmakers enacted a law that required agencies to have some written policy in place. However, there was little guidance on what that policy should be. To remedy this problem, the state law enforcement policy agency, the Virginia Department of Criminal Justice Services (DCJS) promulgated, in 2011, a detailed model policy on eyewitness procedure. Nevertheless, as reported in a 2013 study, those model practices were only haltingly adopted. In particular, many agencies did not use blind or blinded lineups, in which the administrator does not know which photo is that of a suspect or cannot view which photo the eyewitness is examining. In Fall 2018, all of the over-three hundred law enforcement agencies in Virginia had their policies on this subject requested, using the state freedom of information law. The results show that there has now been widespread adoption of the DCJS model policy. Improved eyewitness identification practices have been adopted by the vast majority of agencies, including large and small agencies. This Article concludes by asking what contributed to the extensive dissemination of a model police policy, and what its implications are for improving police policy and practice without the use of regulation
Dissipative Van der Waals interaction between a small particle and a metal surface
We use a general theory of the fluctuating electromagnetic field to calculate
the friction force acting on a small neutral particle, e.g., a physisorbed
molecule, or a nanoscale object with arbitrary dispersive and absorptive
dielectric properties, moving near a metal surface. We consider the dependence
of the electromagnetic friction on the temperature , the separation , and
discuss the role of screening, non-local and retardation effects. We find that
for high resistivity materials, the dissipative van der Waals interaction can
be an important mechanism of vibrational energy relaxation of physisorbed
molecules, and friction for microscopic solids. Several controversial topics
related to electromagnetic dissipative shear stress is considered. The problem
of local heating of the surface by an STM tip is also briefly commented on.Comment: 11 pages, No figure
- …