25 research outputs found

    The C-type lectin receptor CLECSF8 (CLEC4D) is expressed by myeloid cells and triggers cellular activation through syk kinase

    Get PDF
    11 pags, 7 figsCLECSF8 is a poorly characterized member of the "Dectin-2 cluster" of C-type lectin receptors and was originally thought to be expressed exclusively by macrophages. We show here that CLECSF8 is primarily expressed by peripheral blood neutrophils and monocytes and weakly by several subsets of peripheral blood dendritic cells. However, expression of this receptor is lost upon in vitro differentiation of monocytes into dendritic cells or macrophages. Like the other members of the Dectin-2 family, which require association of their transmembrane domains with signaling adaptors for surface expression, CLECSF8 is retained intracellularly when expressed in non-myeloid cells. However, we demonstrate that CLECSF8 does not associate with any known signaling adaptor molecule, including DAP10, DAP12, or the FcRγ chain, and we found that the C-type lectin domain of CLECSF8 was responsible for its intracellular retention. Although CLECSF8 does not contain a signaling motif in its cytoplasmic domain, we show that this receptor is capable of inducing signaling via Syk kinase in myeloid cells and that it can induce phagocytosis, proinflammatory cytokine production, and the respiratory burst. These data therefore indicate that CLECSF8 functions as an activation receptor on myeloid cells and associates with a novel adaptor molecule. Characterization of the CLECSF8-deficient mice and screening for ligands using oligosaccharide microarrays did not provide further insights into the physiological function of this receptor. © 2012 by The American Society for Biochemistry and Molecular Biology, Inc.This work was funded by the Wellcome Trust, the National Research Foundation, the Deutscher Akademischer Austauschdienst, the University of Cape Town, the UK Research Council Basic Technology Initiative “Glycoar-rays” (GRS/79268), and the UK Medical Research Council. A. S. P is a fellowof the Fundação para a Ciência e Tecnologia (SFRH/BPD/26515/2006, Portugal) and M. A. C. of the Consejo Superior de Investigaciones Cientificas, Programe “Junta para la Ampliación de Estudios” (JaeDoc/098/2011) cofinanced by the Fondo Social Europeo

    The Role of Sialyl Glycan Recognition in Host Tissue Tropism of the Avian Parasite Eimeria tenella

    Get PDF
    Eimeria spp. are a highly successful group of intracellular protozoan parasites that develop within intestinal epithelial cells of poultry, causing coccidiosis. As a result of resistance against anticoccidial drugs and the expense of manufacturing live vaccines, it is necessary to understand the relationship between Eimeria and its host more deeply, with a view to developing recombinant vaccines. Eimeria possesses a family of microneme lectins (MICs) that contain microneme adhesive repeat regions (MARR). We show that the major MARR protein from Eimeria tenella, EtMIC3, is deployed at the parasite-host interface during the early stages of invasion. EtMIC3 consists of seven tandem MAR1-type domains, which possess a high specificity for sialylated glycans as shown by cell-based assays and carbohydrate microarray analyses. The restricted tissue staining pattern observed for EtMIC3 in the chicken caecal epithelium indicates that EtMIC3 contributes to guiding the parasite to the site of invasion in the chicken gut. The microarray analyses also reveal a lack of recognition of glycan sequences terminating in the N-glycolyl form of sialic acid by EtMIC3. Thus the parasite is well adapted to the avian host which lacks N-glycolyl neuraminic acid. We provide new structural insight into the MAR1 family of domains and reveal the atomic resolution basis for the sialic acid-based carbohydrate recognition. Finally, a preliminary chicken immunization trial provides evidence that recombinant EtMIC3 protein and EtMIC3 DNA are effective vaccine candidates

    Sialyllactose in Viral Membrane Gangliosides Is a Novel Molecular Recognition Pattern for Mature Dendritic Cell Capture of HIV-1

    Get PDF
    An accessible sialyllactose moiety on viral membrane gangliosides is shown to be essential for HIV-1 uptake into mature dendritic cells, thereby promoting viral transfer and infection of bystander CD4+ T lymphocytes

    Lipopolysaccharide O-antigen molecular and supramolecular modifications of plant root microbiota are pivotal for host recognition

    No full text
    Lipopolysaccharides, the major outer membrane components of Gram-negative bacteria, are crucial actors of the host-microbial dialogue. They can contribute to the establishment of either symbiosis or bacterial virulence, depending on the bacterial lifestyle. Plant microbiota shows great complexity, promotes plant health and growth and assures protection from pathogens. How plants perceive LPS from plant-associated bacteria and discriminate between beneficial and pathogenic microbes is an open and urgent question. Here, we report on the structure, conformation, membrane properties and immune recognition of LPS isolated from the Arabidopsis thaliana root microbiota member Herbaspirillum sp. Root189. The LPS consists of an O-methylated and variously acetylated D-rhamnose containing polysaccharide with a rather hydrophobic surface. Plant immunology studies in A. thaliana demonstrate that the native acetylated O-antigen shields the LPS from immune recognition whereas the O-deacylated one does not. These findings highlight the role of Herbaspirillum LPS within plant-microbial crosstalk, and how O-antigen modifications influence membrane properties and modulate LPS host recognition

    Lipopolysaccharide O-antigen molecular and supramolecular modifications of plant root microbiota are pivotal for host recognition

    No full text
    Lipopolysaccharides, the major outer membrane components of Gram-negative bacteria, are crucial actors of the host-microbial dialogue. They can contribute to the establishment of either symbiosis or bacterial virulence, depending on the bacterial lifestyle. Plant microbiota shows great complexity, promotes plant health and growth and assures protection from pathogens. How plants perceive LPS from plant-associated bacteria and discriminate between beneficial and pathogenic microbes is an open and urgent question. Here, we report on the structure, conformation, membrane properties and immune recognition of LPS isolated from the Arabidopsis thaliana root microbiota member Herbaspirillum sp. Root189. The LPS consists of an O-methylated and variously acetylated Drhamnose containing polysaccharide with a rather hydrophobic surface. Plant immunology studies in A. thaliana demonstrate that the native acetylated O-antigen shields the LPS from immune recognition whereas the O- deacylated one does not. These findings highlight the role of Herbaspirillum LPS within plant-microbial crosstalk, and how O-antigen modifications influence membrane properties and modulate LPS host recognition

    Deciphering how Cpl-7 cell wall-binding repeats recognize the bacterial peptidoglycan

    No full text
    Endolysins, the cell wall lytic enzymes encoded by bacteriophages to release the phage progeny, are among the top alternatives to fight against multiresistant pathogenic bacteria; one of the current biggest challenges to global health. Their narrow range of susceptible bacteria relies, primarily, on targeting specific cell-wall receptors through specialized modules. The cell wall-binding domain of Cpl-7 endolysin, made of three CW-7 repeats, accounts for its extended-range of substrates. Using as model system the cell wall-binding domain of Cpl-7, here we describe the molecular basis for the bacterial cell wall recognition by the CW-7 motif, which is widely represented in sequences of cell wall hydrolases. We report the crystal and solution structure of the full-length domain, identify N-acetyl-D-glucosaminyl-(β1,4)-N-acetylmuramyl-L-alanyl-D-isoglutamine (GMDP) as the peptidoglycan (PG) target recognized by the CW-7 motifs, and characterize feasible GMDP-CW-7 contacts. Our data suggest that Cpl-7 cell wall-binding domain might simultaneously bind to three PG chains, and also highlight the potential use of CW-7-containing lysins as novel anti-infectives.Peer Reviewe
    corecore