1,052 research outputs found

    The geology and petrogenesis of the southern closepet granite

    Get PDF
    The Archaean Closepet Granite is a polyphase body intruding the Peninsular Gneiss Complex and the associated supracrustal rocks. The granite out-crop runs for nearly 500 km with an approximate width of 20 to 25 km and cut across the regional metamorphic structure passing from granulite facies in the South and green schist facies in the north. In the amphibolite-granulite facies transition zone the granite is intimately mixed with migmatites and charnockite. Field observations suggests that anatexis of Peninsular gneisses led to the formation of granite melt, and there is a space relationship between migmatite formation, charnockite development and production and emplacement of granite magma. Based on texture and cross cutting relationships four major granite phases are recognized: (1) Pyroxene bearing dark grey granite; (2) Porphyritec granite; (3) Equigranular grey granite; and (4) Equigranular pink granite. The granite is medium to coarse grained and exhibit hypidiomorphic granular to porphyritic texture. The modal composition varies from granite granodiorite to quartz monzonite. Geochemical variation of the granite suite is consistent with either fractional crystallization or partial melting, but in both the cases biotite plus feldspar must be involved as fractionating or residual phases during melting to account trace element chemistry. The trace element data has been plotted on discriminant diagrams, where majority of samples plot in volcanic arc and within plate, tectonic environments. The granite show distinct REE patterns with variable total REE content. The REE patterns and overall abundances suggests that the granite suite represents a product of partial melting of crustal source in which fractional crystallization operated in a limited number of cases

    Single Chip Solution with1-Wire Communication Protocol to Interface Digital Transducers to Sensor Networks

    Get PDF
    A virtual laboratory application setup is used to control and monitorremotely the operation of several sensor nodes placed at different geographicallocations. In this paper, we present the design of a generalized, low-cost and reconfigurablesmart sensor node using a Zigbee with a Field-Programmable Gate Array(FPGA) that embeds all processing and communication functionalities based on theIEEE 1451 family of standards with communication taking place through a 1-wireprotocol. The architecture of the sensor node is based on the single chip concept thatincludes communication, processing and transducer control functionalities. Theproposed architecture reduces the physical size, power and increases speedup ofprocessing due to inter-module communication. Results indicate the accuracy of theproposed system is tested with a temperature sensor which has 1-wire protocol

    Tectono-Thermal History of the Neoarchean Balehonnur Shear Zone, Western Dharwar Craton (Southern India)

    Get PDF
    AbstractA widely spaced Neoarchean shear zone network traverses the granite-greenstone terrains of the Western Dharwar craton (WDC). The NNW-SSE trending Balehonnur shear zone traverses the largest part of the preserved tilted Archean crustal ensemble in the Western Dharwar craton (WDC) from the amphibolite-granulite transition in the south to greenschist facies in the north and eventually concealed under Deccan lava flows. Published tectonic fabrics data and kinematic analysis, with our data reveal a sinistral sense of shearing that effectuate greenstone sequences, Tonalite-Trondhjemite-Granodiorite Gneisses (TTG), and Koppa granite as reflected in variable deformation and strain localization. A profound increase of strain towards the core of the shear zone in the ca. 2610 Ma Koppa granite is marked by a transition from weak foliation outside the shear zone through the development of C-S structures and C-prime fabrics, mylonite to ultramylonite. The mineral assemblages in the Koppa granite and adjoining greenstone indicate near peak P-T conditions of 1.2 Gpa, 775-800°C following a slow cooling path of 1.0 GPa and 650°C. Field-based tectonic fabrics data together with U-Pb zircon ages reveal that the Koppa granite emplaced along the contact zone of Shimoga-Bababudan basin ca. 2610 Ma, coinciding with the emplacement of ca. 2600 Ma Arsikere-Banavara, Pandavpura, and Chitradurga granites further east which mark the stabilization of WDC. Significant variation in major element oxide (SiO2 = 56-69 wt.%) together with high content of incompatible elements (REE, Nb, Zr, and Y) and high zircon crystallization temperatures (~1000°C) of Koppa granite suggests derivation by partial melting of composite sources involving enriched uppermost mantle and lower crust. The development of widely spaced shear zones is probably linked to the assembly of eastern and western blocks through westward convergence of hot oceanic lithosphere against already cratonized thick colder western block leading to the development of strain heterogeneities between greenstone and TTGs due to their different mineral assemblages leading to rheological contrast in the cratonic lithologies

    Measurement of Pion Enhancement at Low Transverse Momentum and of the Delta-Resonance Abundance in Si-Nucleus Collisions at AGS Energy

    Get PDF
    We present measurements of the pion transverse momentum (p_t) spectra in central Si-nucleus collisions in the rapidity range 2.0<y<5.0 for p_t down to and including p_t=0. The data exhibit an enhanced pion yield at low p_t compared to what is expected for a purely thermal spectral shape. This enhancement is used to determine the Delta-resonance abundance at freeze-out. The results are consistent with a direct measurement of the Delta-resonance yield by reconstruction of proton-pion pairs and imply a temperature of the system at freeze-out close to 140 MeV.Comment: 12 pages + 4 figures (uuencoded at end-of-file

    Performance of prototypes for the ALICE electromagnetic calorimeter

    Full text link
    The performance of prototypes for the ALICE electromagnetic sampling calorimeter has been studied in test beam measurements at FNAL and CERN. A 4×44\times4 array of final design modules showed an energy resolution of about 11% /E(GeV)\sqrt{E(\mathrm{GeV})} ⊕\oplus 1.7 % with a uniformity of the response to electrons of 1% and a good linearity in the energy range from 10 to 100 GeV. The electromagnetic shower position resolution was found to be described by 1.5 mm ⊕\oplus 5.3 mm /E(GeV)\sqrt{E \mathrm{(GeV)}}. For an electron identification efficiency of 90% a hadron rejection factor of >600>600 was obtained.Comment: 10 pages, 10 figure

    A novel ultrasound technique to detect early chronic kidney disease [version 2; referees: 2 approved]

    Get PDF
    Chronic kidney disease (CKD) of unknown etiology is recognized as a major public health challenge and a leading cause of morbidity and mortality in the dry zone in Sri Lanka. CKD is asymptomatic and are diagnosed only in late stages. Evidence points to strong correlation between progression of CKD and kidney fibrosis. Several biochemical markers of renal fibrosis have been associated with progression of CKD. However, no marker is able to predict CKD consistently and accurately before being detected with traditional clinical tests (serum creatinine, and cystatin C, urine albumin or protein, and ultrasound scanning). In this paper, we hypothesize that fibrosis in the kidney, and therefore the severity of the disease, is reflected in the frequency spectrum of the scattered ultrasound from the kidney. We present a design of a simple ultrasound system, and a set of clinical and laboratory studies to identify spectral characteristics of the scattered ultrasound wave from the kidney that correlates with CKD. We believe that spectral parameters identified in these studies can be used to detect and stratify CKD at an earlier stage than what is possible with current markers of CKD
    • …
    corecore