130 research outputs found

    Siderophores as an iron source for picocyanobacteria in deep chlorophyll maximum layers of the oligotrophic ocean

    Get PDF
    Prochlorococcus and Synechococcus are the most abundant photosynthesizing organisms in the oceans. Gene content variation among picocyanobacterial populations in separate ocean basins often mirrors the selective pressures imposed by the region's distinct biogeochemistry. By pairing genomic datasets with trace metal concentrations from across the global ocean, we show that the genomic capacity for siderophore-mediated iron uptake is widespread in Synechococcus and low-light adapted Prochlorococcus populations from deep chlorophyll maximum layers of iron-depleted regions of the oligotrophic Pacific and S. Atlantic oceans: Prochlorococcus siderophore consumers were absent in the N. Atlantic ocean (higher new iron flux) but constituted up to half of all Prochlorococcus genomes from metagenomes in the N. Pacific (lower new iron flux). Picocyanobacterial siderophore consumers, like many other bacteria with this trait, also lack siderophore biosynthesis genes indicating that they scavenge exogenous siderophores from seawater. Statistical modeling suggests that the capacity for siderophore uptake is endemic to remote ocean regions where atmospheric iron fluxes are the smallest, especially at deep chlorophyll maximum and primary nitrite maximum layers. We argue that abundant siderophore consumers at these two common oceanographic features could be a symptom of wider community iron stress, consistent with prior hypotheses. Our results provide a clear example of iron as a selective force driving the evolution of marine picocyanobacteria

    Adverse Childhood Experiences and Adult Cardiometabolic Risk Factors and Disease Outcomes: Cross-Sectional, Populationbased Study of Adults in Rural Uganda

    Get PDF
    Background: Cardiovascular diseases (CVD) pose a major threat to public health in sub-Saharan African communities, where the burden of these classes of illnesses is expected to double by 2030. Growing research suggests that past developmental experiences and early life conditions may also elevate CVD risk throughout the life course. Greater childhood stress and adversity are consistently associated with a range of adult CVDs and associated risk factors, yet little research exists on the long-term effects of early life stress on adult physical health outcomes, especially CVD risk, in sub-Saharan African contexts. This study aims to evaluate the associations between adverse childhood experiences and adult cardiometabolic risk factors and health outcomes in a population-based study of adults living in Mbarara, a rural region of southwestern Uganda. Methods Data come from an ongoing, whole-population social network cohort study of adults living in the eight villages of Nyakabare Parish, Mbarara. A modified version of the Adverse Childhood Experiences-International Questionnaire (ACEs) assessed past exposure to physical, emotional, and sexual adversity. Participants also took part in a health fair where medical histories on cardiometabolic risk factors and cardiovascular diseases were gathered. Multiple logistic regression models estimated the associations between ACEs and cardiometabolic risk factors and health outcomes. Results Data were available on 545 adults. The average number of ACEs was 4.9 out of a possible 16. The cumulative number of ACEs were associated with having a history of heart attack and/or heart failure (adjusted odds ratio (AOR) = 1.11, 95% confidence interval (CI) = 0.999-1.234, P = 0.051), but the estimated association was not statistically significant. ACEs did not have statistically significant associations with any others measures of adult cardiometabolic risk and CVD. Conclusions: Adverse childhood experiences are not associated with a range of adult cardiometabolic risk factors and health outcomes in this sample of rural Ugandan adults. Further research in this sample is necessary to identify the pathways that may motivate these null relationship and possibly protect against adverse cardiometabolic and cardiovascular health outcomes

    Siderophores as an iron source for picocyanobacteria in deep chlorophyll maximum layers of the oligotrophic ocean

    Get PDF
    Prochlorococcus and Synechococcus are the most abundant photosynthesizing organisms in the oceans. Gene content variation among picocyanobacterial populations in separate ocean basins often mirrors the selective pressures imposed by the region’s distinct biogeochemistry. By pairing genomic datasets with trace metal concentrations from across the global ocean, we show that the genomic capacity for siderophore-mediated iron uptake is widespread in Synechococcus and low-light adapted Prochlorococcus populations from deep chlorophyll maximum layers of iron-depleted regions of the oligotrophic Pacific and S. Atlantic oceans: Prochlorococcus siderophore consumers were absent in the N. Atlantic ocean (higher new iron flux) but constituted up to half of all Prochlorococcus genomes from metagenomes in the N. Pacific (lower new iron flux). Picocyanobacterial siderophore consumers, like many other bacteria with this trait, also lack siderophore biosynthesis genes indicating that they scavenge exogenous siderophores from seawater. Statistical modeling suggests that the capacity for siderophore uptake is endemic to remote ocean regions where atmospheric iron fluxes are the smallest, especially at deep chlorophyll maximum and primary nitrite maximum layers. We argue that abundant siderophore consumers at these two common oceanographic features could be a symptom of wider community iron stress, consistent with prior hypotheses. Our results provide a clear example of iron as a selective force driving the evolution of marine picocyanobacteria.</p

    Ion-Transfer Voltammetric Behavior of Propranolol at Nanoscale Liquid-Liquid Interface Arrays

    Get PDF
    In this work, the ion-transfer voltammetric detection of the protonated β-blocker propranolol was explored at arrays of nanoscale interfaces between two immiscible electrolyte solutions (ITIES). Silicon nitride nanoporous membranes with 400 pores in a hexagonal arrangement, with either 50 or 17 nm radius pores, were used to form regular arrays of nanoITIES. It was found that the aqueous-to-organic ion-transfer current continuously increased steadily rather than reaching a limiting current plateau after the ion-transfer wave; the slope of this limiting current region was concentration dependent and associated with the high ion flux at the nanointerfaces. Electrochemical data were examined in terms of an independent nanointerface approach and an equivalent microdisc approach, supported by finite element simulation. In comparison to the larger interface configuration (50 nm radius), the array of 17 nm radius nanoITIES exhibited a 6.5-times higher current density for propranolol detection due to the enhanced ion flux arising from the convergent diffusion to smaller electrochemical interfaces. Both nanoITIES arrays achieved the equivalent limits of detection, 0.8 μM, using cyclic voltammetry. Additionally, the effect of scan rate on the charging and faradaic currents at these nanoITIES arrays, as well as their stability over time, was investigated. The results demonstrate that arrays of nanoscale liquid–liquid interfaces can be applied to study electrochemical drug transfer, and provide the basis for the development of miniaturized and integrated detection platforms for drug analysis

    Regulatory (pan-)genome of an obligate intracellular pathogen in the PVC superphylum.

    Get PDF
    Like other obligate intracellular bacteria, the Chlamydiae feature a compact regulatory genome that remains uncharted owing to poor genetic tractability. Exploiting the reduced number of transcription factors (TFs) encoded in the chlamydial (pan-)genome as a model for TF control supporting the intracellular lifestyle, we determined the conserved landscape of TF specificities by ChIP-Seq (chromatin immunoprecipitation-sequencing) in the chlamydial pathogen Waddlia chondrophila. Among 10 conserved TFs, Euo emerged as a master TF targeting &gt;100 promoters through conserved residues in a DNA excisionase-like winged helix-turn-helix-like (wHTH) fold. Minimal target (Euo) boxes were found in conserved developmentally-regulated genes governing vertical genome transmission (cytokinesis and DNA replication) and genome plasticity (transposases). Our ChIP-Seq analysis with intracellular bacteria not only reveals that global TF regulation is maintained in the reduced regulatory genomes of Chlamydiae, but also predicts that master TFs interpret genomic information in the obligate intracellular α-proteobacteria, including the rickettsiae, from which modern day mitochondria evolved

    Marine microbial metagenomes sampled across space and time

    Get PDF
    Recent advances in understanding the ecology of marine systems have been greatly facilitated by the growing availability of metagenomic data, which provide information on the identity, diversity and functional potential of the microbial community in a particular place and time. Here we present a dataset comprising over 5 terabases of metagenomic data from 610 samples spanning diverse regions of the Atlantic and Pacific Oceans. One set of metagenomes, collected on GEOTRACES cruises, captures large geographic transects at multiple depths per station. The second set represents two years of time-series data, collected at roughly monthly intervals from 3 depths at two long-term ocean sampling sites, Station ALOHA and BATS. These metagenomes contain genomic information from a diverse range of bacteria, archaea, eukaryotes and viruses. The data's utility is strengthened by the availability of extensive physical, chemical, and biological measurements associated with each sample. We expect that these metagenomes will facilitate a wide range of comparative studies that seek to illuminate new aspects of marine microbial ecosystems

    Outcome in patients perceived as receiving excessive care across different ethical climates: a prospective study in 68 intensive care units in Europe and the USA

    Get PDF
    Purpose: Whether the quality of the ethical climate in the intensive care unit (ICU) improves the identification of patients receiving excessive care and affects patient outcomes is unknown. Methods: In this prospective observational study, perceptions of excessive care (PECs) by clinicians working in 68 ICUs in Europe and the USA were collected daily during a 28-day period. The quality of the ethical climate in the ICUs was assessed via a validated questionnaire. We compared the combined endpoint (death, not at home or poor quality of life at 1 year) of patients with PECs and the time from PECs until written treatment-limitation decisions (TLDs) and death across the four climates defined via cluster analysis. Results: Of the 4747 eligible clinicians, 2992 (63%) evaluated the ethical climate in their ICU. Of the 321 and 623 patients not admitted for monitoring only in ICUs with a good (n = 12, 18%) and poor (n = 24, 35%) climate, 36 (11%) and 74 (12%), respectively were identified with PECs by at least two clinicians. Of the 35 and 71 identified patients with an available combined endpoint, 100% (95% CI 90.0–1.00) and 85.9% (75.4–92.0) (P = 0.02) attained that endpoint. The risk of death (HR 1.88, 95% CI 1.20–2.92) or receiving a written TLD (HR 2.32, CI 1.11–4.85) in patients with PECs by at least two clinicians was higher in ICUs with a good climate than in those with a poor one. The differences between ICUs with an average climate, with (n = 12, 18%) or without (n = 20, 29%) nursing involvement at the end of life, and ICUs with a poor climate were less obvious but still in favour of the former. Conclusion: Enhancing the quality of the ethical climate in the ICU may improve both the identification of patients receiving excessive care and the decision-making process at the end of life

    Single cell genomes of Prochlorococcus, Synechococcus, and sympatric microbes from diverse marine environments

    Get PDF
    Prochlorococcus and Synechococcus are the dominant primary producers in marine ecosystems and perform a significant fraction of ocean carbon fixation. These cyanobacteria interact with a diverse microbial community that coexists with them. Comparative genomics of cultivated isolates has helped address questions regarding patterns of evolution and diversity among microbes, but the fraction that can be cultivated is miniscule compared to the diversity in the wild. To further probe the diversity of these groups and extend the utility of reference sequence databases, we report a data set of single cell genomes for 489 Prochlorococcus, 50 Synechococcus, 9 extracellular virus particles, and 190 additional microorganisms from a diverse range of bacterial, archaeal, and viral groups. Many of these uncultivated single cell genomes are derived from samples obtained on GEOTRACES cruises and at well-studied oceanographic stations, each with extensive suites of physical, chemical, and biological measurements. The genomic data reported here greatly increases the number of available Prochlorococcus genomes and will facilitate studies on evolutionary biology, microbial ecology, and biological oceanography

    Epidemiology of intra-abdominal infection and sepsis in critically ill patients: “AbSeS”, a multinational observational cohort study and ESICM Trials Group Project

    Get PDF
    Purpose: To describe the epidemiology of intra-abdominal infection in an international cohort of ICU patients according to a new system that classifies cases according to setting of infection acquisition (community-acquired, early onset hospital-acquired, and late-onset hospital-acquired), anatomical disruption (absent or present with localized or diffuse peritonitis), and severity of disease expression (infection, sepsis, and septic shock). Methods: We performed a multicenter (n = 309), observational, epidemiological study including adult ICU patients diagnosed with intra-abdominal infection. Risk factors for mortality were assessed by logistic regression analysis. Results: The cohort included 2621 patients. Setting of infection acquisition was community-acquired in 31.6%, early onset hospital-acquired in 25%, and late-onset hospital-acquired in 43.4% of patients. Overall prevalence of antimicrobial resistance was 26.3% and difficult-to-treat resistant Gram-negative bacteria 4.3%, with great variation according to geographic region. No difference in prevalence of antimicrobial resistance was observed according to setting of infection acquisition. Overall mortality was 29.1%. Independent risk factors for mortality included late-onset hospital-acquired infection, diffuse peritonitis, sepsis, septic shock, older age, malnutrition, liver failure, congestive heart failure, antimicrobial resistance (either methicillin-resistant Staphylococcus aureus, vancomycin-resistant enterococci, extended-spectrum beta-lactamase-producing Gram-negative bacteria, or carbapenem-resistant Gram-negative bacteria) and source control failure evidenced by either the need for surgical revision or persistent inflammation. Conclusion: This multinational, heterogeneous cohort of ICU patients with intra-abdominal infection revealed that setting of infection acquisition, anatomical disruption, and severity of disease expression are disease-specific phenotypic characteristics associated with outcome, irrespective of the type of infection. Antimicrobial resistance is equally common in community-acquired as in hospital-acquired infection
    corecore