103 research outputs found

    Rubbing induced reversible fluorescence switching in thiophene-based organic semiconductor films by mechanical amorphisation

    Get PDF
    Here, we applied rubbing on thiophene-basedorganic semiconductor thin films to induce a reversible mechanical amorphisation. Amorphisation is associated with fluorescence switching, which is regulated by the polymorphic nature of the film. Thermal annealing of rubbed films produces an opposite effect with respect to rubbing, inducing film crystallization. Notably, thermal crystallisation starts at a low temperature but generates the polymorph stable at a high temperature in the bulk. The mechanism of mechanical transformation is explained considering the mechanical properties of the material and demonstrated through combined X-ray diffraction, atomic force microscopy and photoluminescence at confocal microscopy. This journal i

    Platelet Activation in Ovarian Cancer Ascites: Assessment of GPIIb/IIIa and PF4 in Small Extracellular Vesicles by Nano-Flow Cytometry Analysis

    Get PDF
    In ovarian cancer, ascites represent the microenvironment in which the platelets extravasate to play their role in the disease progression. We aimed to develop an assay to measure ascites’ platelet activation. We enriched small extracellular vesicles (EVs) (40–200 nm) from ascites of high-grade epithelial ovarian cancer patients (n = 12) using precipitation with polyethylene glycol, and we conducted single-particle phenotyping analysis by nano-flow cytometry after labelling and ultra-centrifugation. Atomic force microscopy single-particle nanomechanical analysis showed heterogeneous distributions in the size of the precipitated particles and their mechanical stiffness. Samples were fluorescently labelled with antibodies specific to the platelet markers GPIIb/IIIa and PF4, showing 2.6 to 18.16% of all particles stained positive for the biomarkers and, simultaneously, the EV membrane labelling. Single-particle phenotyping analysis allowed us to quantify the total number of non-EV particles, the number of small-EVs and the number of platelet-derived small-EVs, providing a platelet activation assessment independent of the ascites volume. The percentage of platelet-derived small-EVs was positively correlated with platelet distribution width to platelet count in sera (PDW/PLT). Overall, we presented a high-throughput method that can be helpful in future studies to determine the correlation between the extent of platelet activation in ascites and disease status

    Image Retrieval through Abstract Shape Indication

    Get PDF
    Abstract A new system for image retrieval is presented. The query is indicated by means of three pictures, which should span the abstract shape concept that the user has in mind. The search is accomplished by using a set of size functions, and giving them different weights, computed on the base of the three input images. The system has been tested on a database of 2976 synthetic images

    Effect of Spermidine on Misfolding and Interactions of Alpha-Synuclein

    Get PDF
    Alpha-synuclein (α-Syn) is a 140 aa presynaptic protein which belongs to a group of natively unfolded proteins that are unstructured in aqueous solutions. The aggregation rate of α-Syn is accelerated in the presence of physiological levels of cellular polyamines. Here we applied single molecule AFM force spectroscopy to characterize the effect of spermidine on the very first stages of α-Syn aggregation – misfolding and assembly into dimers. Two α-Syn variants, the wild-type (WT) protein and A30P, were studied. The two protein molecules were covalently immobilized at the C-terminus, one at the AFM tip and the other on the substrate, and intermolecular interactions between the two molecules were measured by multiple approach-retraction cycles. At conditions close to physiological ones at which α-Syn misfolding is a rare event, the addition of spermidine leads to a dramatic increase in the propensity of the WT and mutant proteins to misfold. Importantly, misfolding is characterized by a set of conformations, and A30P changes the misfolding pattern as well as the strength of the intermolecular interactions. Together with the fact that spermidine facilitates late stages of α-Syn aggregation, our data demonstrate that spermidine promotes the very early stages of protein aggregation including α-Syn misfolding and dimerization. This finding suggests that increased levels of spermidine and potentially other polyamines can initiate the disease-related process of α-Syn

    Common Features at the Start of the Neurodegeneration Cascade

    Get PDF
    A single-molecule study reveals that neurotoxic proteins share common structural features that may trigger neurodegeneration, thus identifying new targets for therapy and diagnosis

    Physical association of low density lipoprotein particles and extracellular vesicles unveiled by single particle analysis

    Get PDF
    Extracellular vesicles (EVs) in blood plasma are recognized as potential biomarkers for disease. Although blood plasma is easily obtainable, analysis of EVs at the single particle level is still challenging due to the biological complexity of this body fluid. Besides EVs, plasma contains different types of lipoproteins particles (LPPs), that outnumber EVs by orders of magnitude and which partially overlap in biophysical properties such as size, density and molecular makeup. Consequently, during EV isolation LPPs are often co-isolated. Furthermore, physical EV-LPP complexes have been observed in purified EV preparations. Since co-isolation or association of LPPs can impact EV-based analysis and biomarker profiling, we investigated the presence and formation of EV-LPP complexes in biological samples by using label-free atomic force microscopy, cryo-electron tomography and synchronous Rayleigh and Raman scattering analysis of optically trapped particles and fluorescence-based high sensitivity single particle flow cytometry. Furthermore, we evaluated the impact on flow cytometric analysis in the presence of LPPs using in vitro spike-in experiments of purified tumour cell line-derived EVs in different classes of purified human LPPs. Based on orthogonal single-particle analysis techniques we demonstrate that EV-LPP complexes can form under physiological conditions. Furthermore, we show that in fluorescence-based flow cytometric EV analysis staining of LPPs, as well as EV-LPP associations, can influence quantitative and qualitative EV analysis. Lastly, we demonstrate that the colloidal matrix of the biofluid in which EVs reside impacts their buoyant density, size and/or refractive index (RI), which may have consequences for down-stream EV analysis and EV biomarker profiling

    Minimal information for studies of extracellular vesicles (MISEV2023): From basic to advanced approaches

    Get PDF
    Extracellular vesicles (EVs), through their complex cargo, can reflect the state of their cell of origin and change the functions and phenotypes of other cells. These features indicate strong biomarker and therapeutic potential and have generated broad interest, as evidenced by the steady year-on-year increase in the numbers of scientific publications about EVs. Important advances have been made in EV metrology and in understanding and applying EV biology. However, hurdles remain to realising the potential of EVs in domains ranging from basic biology to clinical applications due to challenges in EV nomenclature, separation from non-vesicular extracellular particles, characterisation and functional studies. To address the challenges and opportunities in this rapidly evolving field, the International Society for Extracellular Vesicles (ISEV) updates its 'Minimal Information for Studies of Extracellular Vesicles', which was first published in 2014 and then in 2018 as MISEV2014 and MISEV2018, respectively. The goal of the current document, MISEV2023, is to provide researchers with an updated snapshot of available approaches and their advantages and limitations for production, separation and characterisation of EVs from multiple sources, including cell culture, body fluids and solid tissues. In addition to presenting the latest state of the art in basic principles of EV research, this document also covers advanced techniques and approaches that are currently expanding the boundaries of the field. MISEV2023 also includes new sections on EV release and uptake and a brief discussion of in vivo approaches to study EVs. Compiling feedback from ISEV expert task forces and more than 1000 researchers, this document conveys the current state of EV research to facilitate robust scientific discoveries and move the field forward even more rapidly

    Minimal Information for Studies of Extracellular Vesicles (MISEV2023): From Basic to Advanced Approaches

    Get PDF
    Extracellular vesicles (EVs), through their complex cargo, can reflect the state of their cell of origin and change the functions and phenotypes of other cells. These features indicate strong biomarker and therapeutic potential and have generated broad interest, as evidenced by the steady year-on-year increase in the numbers of scientific publications about EVs. Important advances have been made in EV metrology and in understanding and applying EV biology. However, hurdles remain to realising the potential of EVs in domains ranging from basic biology to clinical applications due to challenges in EV nomenclature, separation from non-vesicular extracellular particles, characterisation and functional studies. To address the challenges and opportunities in this rapidly evolving field, the International Society for Extracellular Vesicles (ISEV) updates its \u27Minimal Information for Studies of Extracellular Vesicles\u27, which was first published in 2014 and then in 2018 as MISEV2014 and MISEV2018, respectively. The goal of the current document, MISEV2023, is to provide researchers with an updated snapshot of available approaches and their advantages and limitations for production, separation and characterisation of EVs from multiple sources, including cell culture, body fluids and solid tissues. In addition to presenting the latest state of the art in basic principles of EV research, this document also covers advanced techniques and approaches that are currently expanding the boundaries of the field. MISEV2023 also includes new sections on EV release and uptake and a brief discussion of in vivo approaches to study EVs. Compiling feedback from ISEV expert task forces and more than 1000 researchers, this document conveys the current state of EV research to facilitate robust scientific discoveries and move the field forward even more rapidly

    Minimal information for studies of extracellular vesicles (MISEV2023): From basic to advanced approaches.

    Get PDF
    Extracellular vesicles (EVs), through their complex cargo, can reflect the state of their cell of origin and change the functions and phenotypes of other cells. These features indicate strong biomarker and therapeutic potential and have generated broad interest, as evidenced by the steady year-on-year increase in the numbers of scientific publications about EVs. Important advances have been made in EV metrology and in understanding and applying EV biology. However, hurdles remain to realising the potential of EVs in domains ranging from basic biology to clinical applications due to challenges in EV nomenclature, separation from non-vesicular extracellular particles, characterisation and functional studies. To address the challenges and opportunities in this rapidly evolving field, the International Society for Extracellular Vesicles (ISEV) updates its 'Minimal Information for Studies of Extracellular Vesicles', which was first published in 2014 and then in 2018 as MISEV2014 and MISEV2018, respectively. The goal of the current document, MISEV2023, is to provide researchers with an updated snapshot of available approaches and their advantages and limitations for production, separation and characterisation of EVs from multiple sources, including cell culture, body fluids and solid tissues. In addition to presenting the latest state of the art in basic principles of EV research, this document also covers advanced techniques and approaches that are currently expanding the boundaries of the field. MISEV2023 also includes new sections on EV release and uptake and a brief discussion of in vivo approaches to study EVs. Compiling feedback from ISEV expert task forces and more than 1000 researchers, this document conveys the current state of EV research to facilitate robust scientific discoveries and move the field forward even more rapidly

    Minimal information for studies of extracellular vesicles (MISEV2023): From basic to advanced approaches

    Get PDF
    Extracellular vesicles (EVs), through their complex cargo, can reflect the state of their cell of origin and change the functions and phenotypes of other cells. These features indicate strong biomarker and therapeutic potential and have generated broad interest, as evidenced by the steady year-on-year increase in the numbers of scientific publications about EVs. Important advances have been made in EV metrology and in understanding and applying EV biology. However, hurdles remain to realising the potential of EVs in domains ranging from basic biology to clinical applications due to challenges in EV nomenclature, separation from non-vesicular extracellular particles, characterisation and functional studies. To address the challenges and opportunities in this rapidly evolving field, the International Society for Extracellular Vesicles (ISEV) updates its ‘Minimal Information for Studies of Extracellular Vesicles’, which was first published in 2014 and then in 2018 as MISEV2014 and MISEV2018, respectively. The goal of the current document, MISEV2023, is to provide researchers with an updated snapshot of available approaches and their advantages and limitations for production, separation and characterisation of EVs from multiple sources, including cell culture, body fluids and solid tissues. In addition to presenting the latest state of the art in basic principles of EV research, this document also covers advanced techniques and approaches that are currently expanding the boundaries of the field. MISEV2023 also includes new sections on EV release and uptake and a brief discussion of in vivo approaches to study EVs. Compiling feedback from ISEV expert task forces and more than 1000 researchers, this document conveys the current state of EV research to facilitate robust scientific discoveries and move the field forward even more rapidly
    • …
    corecore