93 research outputs found

    Membrane-Bound TNF Induces Protective Immune Responses to M. bovis BCG Infection: Regulation of memTNF and TNF Receptors Comparing Two memTNF Molecules

    Get PDF
    Several activities of the transmembrane form of TNF (memTNF) in immune responses to intracellular bacterial infection have been shown to be different from those exerted by soluble TNF. Evidence is based largely on studies in transgenic mice expressing memTNF, but precise cellular mechanisms are not well defined and the importance of TNF receptor regulation is unknown. In addition, memTNF activities are defined for a particular modification of the extracellular domain of TNF but a direct comparison of different mutant memTNF molecules has not been done in vivo

    Pathway of Toll-Like Receptor 7/B Cell Activating Factor/B Cell Activating Factor Receptor Plays a Role in Immune Thrombocytopenia In Vivo

    Get PDF
    Immune thrombocytopenia (ITP) is an autoimmune disorder characterized by anti-platelet autoantibody-mediated platelet destruction. Antigen-presenting cell (APC) dysfunction is considered to play crucial roles in ITP. However, how APC affects autoreactive B cells in ITP is still unknown. Using a mouse model of immune thrombocytopenia, we demonstrated an increase in levels of TLR7 in splenic mononuclear cells (SMCs). Using both TLR7 agonist and TLR7 silencing lentivirus, we found stimulation of TLR7 decreased platelet counts and increased levels of platelet-associated IgG (PAIgG) in ITP mice, which correlates TLR7 with platelet destruction by autoantibodies. Levels of serum BAFF increased significantly in ITP mice and stimulation of TLR7 promoted secretion of BAFF. Among the three BAFF receptors, only BAFF receptor (BAFF-R) increased in ITP mice. However, activation of TLR7 showed no effect on the expression of BAFF receptors. These findings indicate that upregulation of TLR7 may augment BAFF secretion by APC and through ligation of BAFF-R promote autoreactive B cell survival and thus anti-platelet autoantibody production. The pathway of TLR7/BAFF/BAFF-R provides us with an explanation of how activation of APC affects autoantibody production by B cells in ITP and thus might provide a reasonable therapeutic strategy for ITP

    Early, transient depletion of plasmacytoid dendritic cells ameliorates autoimmunity in a lupus model

    Get PDF
    Plasmacytoid dendritic cells (pDCs) have long been implicated in the pathogenesis of lupus. However, this conclusion has been largely based on a correlative link between the copious production of IFN-α/β by pDCs and the IFN-α/β “signature” often seen in human lupus patients. The specific contribution of pDCs to disease in vivo has not been investigated in detail. For this reason, we generated a strain of BXSB lupus-prone mice in which pDCs can be selectively depleted in vivo. Early, transient ablation of pDCs before disease initiation resulted in reduced splenomegaly and lymphadenopathy, impaired expansion and activation of T and B cells, reduced antibodies against nuclear autoantigens and improved kidney pathology. Amelioration of pathology coincided with decreased transcription of IFN-α/β–induced genes in tissues. PDC depletion had an immediate impact on the activation of immune cells, and importantly, the beneficial effects on pathology were sustained even though pDCs later recovered, indicating an early pDC contribution to disease. Together, our findings demonstrate a critical function for pDCs during the IFN-α/β–dependent initiation of autoimmune lupus and point to pDCs as an attractive therapeutic target for the treatment of SLE

    Mutually Positive Regulatory Feedback Loop between Interferons and Estrogen Receptor-α in Mice: Implications for Sex Bias in Autoimmunity

    Get PDF
    gene) and stimulates expression of target genes. female mice had relatively higher steady-state levels of mRNAs encoded by the IFN and ERα-responsive genes as compared to the age-matched males.Our observations identify a novel mutually positive regulatory feedback loop between IFNs and ERα in immune cells in mice and support the idea that activation of this regulatory loop contributes to sex bias in SLE

    Type I IFN and TNFα cross-regulation in immune-mediated inflammatory disease: basic concepts and clinical relevance

    Get PDF
    A cross-regulation between type I IFN and TNFα has been proposed recently, where both cytokines are hypothesized to counteract each other. According to this model, different autoimmune diseases can be viewed as disequilibrium between both cytokines. As this model may have important clinical implications, the present review summarizes and discusses the currently available clinical evidence arguing for or against the proposed cross-regulation between TNFα and type I IFN. In addition, we review how this cross-regulation works at the cellular and molecular levels. Finally, we discuss the clinical relevance of this proposed cross-regulation for biological therapies such as type I IFN or anti-TNFα treatment

    Selective blockade of interferon-α and -β reveals their non-redundant functions in a mouse model of West Nile virus infection

    Get PDF
    Although type I interferons (IFNs) were first described almost 60 years ago, the ability to monitor and modulate the functional activities of the individual IFN subtypes that comprise this family has been hindered by a lack of reagents. The major type I IFNs, IFN-β and the multiple subtypes of IFN-α, are expressed widely and induce their effects on cells by interacting with a shared heterodimeric receptor (IFNAR). In the mouse, the physiologic actions of IFN-α and IFN-β have been defined using polyclonal anti-type I IFN sera, by targeting IFNAR using monoclonal antibodies or knockout mice, or using Ifnb-/- mice. However, the corresponding analysis of IFN-α has been difficult because of its polygenic nature. Herein, we describe two monoclonal antibodies (mAbs) that differentially neutralize murine IFN-β or multiple subtypes of murine IFN-α. Using these mAbs, we distinguish specific contributions of IFN-β versus IFN-α in restricting viral pathogenesis and identify IFN-α as the key mediator of the antiviral response in mice infected with West Nile virus. This study thus suggests the utility of these new reagents in dissecting the antiviral and immunomodulatory roles of IFN-β versus IFN-α in murine models of infection, immunity, and autoimmunity

    Pattern recognition receptors as potential therapeutic targets in inflammatory rheumatic disease

    Get PDF
    The pattern recognition receptors of the innate immune system are part of the first line of defence against pathogens. However, they also have the ability to respond to danger signals that are frequently elevated during tissue damage and at sites of inflammation. Inadvertent activation of pattern recognition receptors has been proposed to contribute to the pathogenesis of many conditions including inflammatory rheumatic diseases. Prolonged inflammation most often results in pain and damage to tissues. In particular, the Toll-like receptors and nucleotide-binding oligomerisation domain-like receptors that form inflammasomes have been postulated as key contributors to the inflammation observed in rheumatoid arthritis, osteoarthritis, gout and systemic lupus erythematosus. As such, there is increasing interest in targeting these receptors for therapeutic treatment in the clinic. Here the role of pattern recognition receptors in the pathogenesis of these diseases is discussed, with an update on the development of interventions to modulate the activity of these potential therapeutic targets

    Interleukin 6 Accelerates Mortality by Promoting the Progression of the Systemic Lupus Erythematosus-Like Disease of BXSB. Yaa Mice

    Get PDF
    IL6 is a multifunctional cytokine that drives terminal B cell differentiation and secretion of immunoglobulins. IL6 also cooperates with IL21 to promote differentiation of CD4(+) T follicular helper cells (TFH). Elevated serum levels of IL6 correlate with disease flares in patients with systemic lupus erythematosus (SLE). We previously reported that IL21 produced by T-FH plays a critical role in the development of the SLE-like disease of BXSB. Yaa mice. To examine the possible contributions of IL6 to disease, we compared disease parameters in IL6-deficient and IL6-competent BXSB. Yaa mice. We report that survival of IL6-deficient BXSB. Yaa mice was significantly prolonged in association with significant reductions in a variety of autoimmune manifestations. Moreover, B cells stimulated by co-engagement of TLR7 and B cell receptor (BCR) produced high levels of IL6 that was further augmented by stimulation with Type I interferon (IFN1). Importantly, the frequencies of T-FH and serum levels of IL21 were significantly reduced in IL6-deficient mice. These findings suggest that high-level production of IL6 by B cells induced by integrated signaling from the IFN1 receptor, TLR7 and BCR promotes the differentiation of IL21-secreting T-FH in a signaling sequence that drives the lethal autoimmune disease of BXSB. Yaa mice.Peer reviewe

    Effects of hospital facilities on patient outcomes after cancer surgery: an international, prospective, observational study

    Get PDF
    Background Early death after cancer surgery is higher in low-income and middle-income countries (LMICs) compared with in high-income countries, yet the impact of facility characteristics on early postoperative outcomes is unknown. The aim of this study was to examine the association between hospital infrastructure, resource availability, and processes on early outcomes after cancer surgery worldwide.Methods A multimethods analysis was performed as part of the GlobalSurg 3 study-a multicentre, international, prospective cohort study of patients who had surgery for breast, colorectal, or gastric cancer. The primary outcomes were 30-day mortality and 30-day major complication rates. Potentially beneficial hospital facilities were identified by variable selection to select those associated with 30-day mortality. Adjusted outcomes were determined using generalised estimating equations to account for patient characteristics and country-income group, with population stratification by hospital.Findings Between April 1, 2018, and April 23, 2019, facility-level data were collected for 9685 patients across 238 hospitals in 66 countries (91 hospitals in 20 high-income countries; 57 hospitals in 19 upper-middle-income countries; and 90 hospitals in 27 low-income to lower-middle-income countries). The availability of five hospital facilities was inversely associated with mortality: ultrasound, CT scanner, critical care unit, opioid analgesia, and oncologist. After adjustment for case-mix and country income group, hospitals with three or fewer of these facilities (62 hospitals, 1294 patients) had higher mortality compared with those with four or five (adjusted odds ratio [OR] 3.85 [95% CI 2.58-5.75]; p<0.0001), with excess mortality predominantly explained by a limited capacity to rescue following the development of major complications (63.0% vs 82.7%; OR 0.35 [0.23-0.53]; p<0.0001). Across LMICs, improvements in hospital facilities would prevent one to three deaths for every 100 patients undergoing surgery for cancer.Interpretation Hospitals with higher levels of infrastructure and resources have better outcomes after cancer surgery, independent of country income. Without urgent strengthening of hospital infrastructure and resources, the reductions in cancer-associated mortality associated with improved access will not be realised
    corecore