179 research outputs found

    Cross Section and Transverse Single-Spin Asymmetry of η\eta Mesons in p+pp^{\uparrow}+p Collisions at s=200\sqrt{s}=200 GeV at Forward Rapidity

    Full text link
    We present a measurement of the cross section and transverse single-spin asymmetry (ANA_N) for η\eta mesons at large pseudorapidity from s=200\sqrt{s}=200~GeV p+pp^{\uparrow}+p collisions. The measured cross section for 0.5<pT<5.00.5<p_T<5.0~GeV/cc and 3.0<η<3.83.0<|\eta|<3.8 is well described by a next-to-leading-order perturbative-quantum-chromodynamics calculation. The asymmetries ANA_N have been measured as a function of Feynman-xx (xFx_F) from 0.2<xF<0.70.2<|x_{F}|<0.7, as well as transverse momentum (pTp_T) from 1.0<pT<4.51.0<p_T<4.5~GeV/cc. The asymmetry averaged over positive xFx_F is AN=0.061±0.014\langle{A_{N}}\rangle=0.061{\pm}0.014. The results are consistent with prior transverse single-spin measurements of forward η\eta and π0\pi^{0} mesons at various energies in overlapping xFx_F ranges. Comparison of different particle species can help to determine the origin of the large observed asymmetries in p+pp^{\uparrow}+p collisions.Comment: 484 authors, 13 pages, 11 figures, 4 tables, 2008 data. v2 is version accepted by Phys. Rev. D. Plain text data tables for the points plotted in figures for this and previous PHENIX publications are (or will be)publicly available at http://www.phenix.bnl.gov/papers.htm

    Quadrupole Anisotropy in Dihadron Azimuthal Correlations in Central dd++Au Collisions at sNN\sqrt{s_{_{NN}}}=200 GeV

    Full text link
    The PHENIX collaboration at the Relativistic Heavy Ion Collider (RHIC) reports measurements of azimuthal dihadron correlations near midrapidity in dd++Au collisions at sNN\sqrt{s_{_{NN}}}=200 GeV. These measurements complement recent analyses by experiments at the Large Hadron Collider (LHC) involving central pp++Pb collisions at sNN\sqrt{s_{_{NN}}}=5.02 TeV, which have indicated strong anisotropic long-range correlations in angular distributions of hadron pairs. The origin of these anisotropies is currently unknown. Various competing explanations include parton saturation and hydrodynamic flow. We observe qualitatively similar, but larger, anisotropies in dd++Au collisions compared to those seen in pp++Pb collisions at the LHC. The larger extracted v2v_2 values in dd++Au collisions at RHIC are consistent with expectations from hydrodynamic calculations owing to the larger expected initial-state eccentricity compared with that from pp++Pb collisions. When both are divided by an estimate of the initial-state eccentricity the scaled anisotropies follow a common trend with multiplicity that may extend to heavy ion data at RHIC and the LHC, where the anisotropies are widely thought to arise from hydrodynamic flow.Comment: 375 authors, 7 pages, 5 figures. Published in Phys. Rev. Lett. v2 has minor changes to text and figures in response to PRL referee suggestions. Plain text data tables for the points plotted in figures for this and previous PHENIX publications are (or will be) publicly available at http://www.phenix.bnl.gov/papers.htm

    Cross section for bbˉb\bar{b} production via dielectrons in d++Au collisions at sNN=200\sqrt{s_{_{NN}}}=200 GeV

    Full text link
    We report a measurement of e+ee^+e^- pairs from semileptonic heavy-flavor decays in dd++Au collisions at sNN=200\sqrt{s_{_{NN}}}=200 GeV. Exploring the mass and transverse-momentum dependence of the yield, the bottom decay contribution can be isolated from charm, and quantified by comparison to {\sc pythia} and {\sc mc@nlo} simulations. The resulting bbˉb\bar{b}-production cross section is σbbˉdAu=1.37±0.28(stat)±0.46(syst)\sigma^{d{\rm Au}}_{b\bar{b}}=1.37{\pm}0.28({\rm stat}){\pm}0.46({\rm syst})~mb, which is equivalent to a nucleon-nucleon cross section of σbbNN=3.4±0.8(stat)±1.1(syst) μ\sigma^{NN}_{bb}=3.4\pm0.8({\rm stat}){\pm}1.1({\rm syst})\ \mub.Comment: 375 authors, 16 pages, 8 figures, 7 tables, 2008 data. Submitted to Phys. Rev. C Plain text data tables for the points plotted in figures for this and previous PHENIX publications are (or will be) publicly available at http://www.phenix.bnl.gov/papers.htm

    Suppression of back-to-back hadron pairs at forward rapidity in d+Au Collisions at sqrt(s_NN)=200 GeV

    Full text link
    Back-to-back hadron pair yields in d+Au and p+p collisions at sqrt(s_NN)=200 GeV were measured with the PHENIX detector at the Relativistic Heavy Ion Collider. Rapidity separated hadron pairs were detected with the trigger hadron at pseudorapidity |eta|<0.35 and the associated hadron at forward rapidity (deuteron direction, 3.0<eta<3.8). Pairs were also detected with both hadrons measured at forward rapidity; in this case the yield of back-to-back hadron pairs in d+Au collisions with small impact parameters is observed to be suppressed by a factor of 10 relative to p+p collisions. The kinematics of these pairs is expected to probe partons in the Au nucleus with low fraction x of the nucleon momenta, where the gluon densities rise sharply. The observed suppression as a function of nuclear thickness, p_T, and eta points to cold nuclear matter effects arising at high parton densities.Comment: 381 authors, 6 pages, 4 figures. Published in Phys. Rev. Lett. (http://link.aps.org/doi/10.1103/PhysRevLett.107.172301). v3 has minor changes to match published version (http://www.phenix.bnl.gov/phenix/WWW/info/pp1/128/PhysRevLett.107.172301) Plain text data tables for points plotted in figures are publicly available at http://www.phenix.bnl.gov/phenix/WWW/info/data/ppg128_data.htm

    Centrality categorization for R_{p(d)+A} in high-energy collisions

    Full text link
    High-energy proton- and deuteron-nucleus collisions provide an excellent tool for studying a wide array of physics effects, including modifications of parton distribution functions in nuclei, gluon saturation, and color neutralization and hadronization in a nuclear environment, among others. All of these effects are expected to have a significant dependence on the size of the nuclear target and the impact parameter of the collision, also known as the collision centrality. In this article, we detail a method for determining centrality classes in p(d)+A collisions via cuts on the multiplicity at backward rapidity (i.e., the nucleus-going direction) and for determining systematic uncertainties in this procedure. For d+Au collisions at sqrt(s_NN) = 200 GeV we find that the connection to geometry is confirmed by measuring the fraction of events in which a neutron from the deuteron does not interact with the nucleus. As an application, we consider the nuclear modification factors R_{p(d)+A}, for which there is a potential bias in the measured centrality dependent yields due to auto-correlations between the process of interest and the backward rapidity multiplicity. We determine the bias correction factor within this framework. This method is further tested using the HIJING Monte Carlo generator. We find that for d+Au collisions at sqrt(s_NN)=200 GeV, these bias corrections are small and vary by less than 5% (10%) up to p_T = 10 (20) GeV. In contrast, for p+Pb collisions at sqrt(s_NN) = 5.02 TeV we find these bias factors are an order of magnitude larger and strongly p_T dependent, likely due to the larger effect of multi-parton interactions.Comment: 375 authors, 18 pages, 16 figures, 4 tables. Submitted to Phys. Rev. C. Plain text data tables for the points plotted in figures for this and previous PHENIX publications are (or will be) publicly available at http://www.phenix.bnl.gov/papers.htm

    Transverse-Momentum Dependence of the J/psi Nuclear Modification in d+Au Collisions at sqrt(s_NN)=200 GeV

    Full text link
    We present measured J/psi production rates in d+Au collisions at sqrt(s_NN) = 200 GeV over a broad range of transverse momentum (p_T=0-14 GeV/c) and rapidity (-2.2<y<2.2). We construct the nuclear-modification factor R_dAu for these kinematics and as a function of collision centrality (related to impact parameter for the R_dAu collision). We find that the modification is largest for collisions with small impact parameters, and observe a suppression (R_dAu<1) for p_T<4 GeV/c at positive rapidities. At negative rapidity we observe a suppression for p_T1) for p_T>2 GeV/c. The observed enhancement at negative rapidity has implications for the observed modification in heavy-ion collisions at high p_T.Comment: 384 authors, 24 pages, 19 figures, 13 tables. Submitted to Phys. Rev. C. Plain text data tables for the points plotted in figures for this and previous PHENIX publications are publicly available at http://www.phenix.bnl.gov/phenix/WWW/info/data/ppg123_data.htm

    Observation of direct-photon collective flow in sqrt(s_NN)=200 GeV Au+Au collisions

    Get PDF
    The second Fourier component v_2 of the azimuthal anisotropy with respect to the reaction plane was measured for direct photons at midrapidity and transverse momentum (p_T) of 1--13 GeV/c in Au+Au collisions at sqr(s_NN)=200 GeV. Previous measurements of this quantity for hadrons with p_T < 6 GeV/c indicate that the medium behaves like a nearly perfect fluid, while for p_T > 6 GeV/c a reduced anisotropy is interpreted in terms of a path-length dependence for parton energy loss. In this measurement with the PHENIX detector at the Relativistic Heavy Ion Collider we find that for p_T > 4 GeV/c the anisotropy for direct photons is consistent with zero, as expected if the dominant source of direct photons is initial hard scattering. However, in the p_T < 4 GeV/c region dominated by thermal photons, we find a substantial direct photon v_2 comparable to that of hadrons, whereas model calculations for thermal photons in this kinematic region significantly underpredict the observed v_2.Comment: 384 authors, 6 pages, 3 figures, and 1 table. Submitted to Phys. Rev. Lett. v2 has minor changes to match the submission version. Plain text data tables for the points plotted in the figures are publicly available at http://www.phenix.bnl.gov/phenix/WWW/info/data/ppg126_data.htm

    Azimuthal anisotropy of pi^0 and eta mesons in Au+Au collisions at sqrt(s_NN)=200 GeV

    Full text link
    The azimuthal anisotropy coefficients v_2 and v_4 of pi^0 and eta mesons are measured in Au+Au collisions at sqrt(s_NN)=200 GeV, as a function of transverse momentum p_T (1-14 GeV/c) and centrality. The extracted v_2 coefficients are found to be consistent between the two meson species over the measured p_T range. The ratio of v_4/v_2^2 for pi^0 mesons is found to be independent of p_T for 1-9 GeV/c, implying a lack of sensitivity of the ratio to the change of underlying physics with p_T. Furthermore, the ratio of v_4/v_2^2 is systematically larger in central collisions, which may reflect the combined effects of fluctuations in the initial collision geometry and finite viscosity in the evolving medium.Comment: 384 authors, 71 institutions, 11 pages, 9 figures, and 2 tables. Submitted to Physical Review C. Plain text data tables for the points plotted in figures for this and previous PHENIX publications are (or will be) publicly available at http://www.phenix.bnl.gov/papers.htm

    Azimuthal anisotropy of neutral pion production in Au+Au collisions at sqrt(s_NN) = 200 GeV: Path-length dependence of jet quenching and the role of initial geometry

    Full text link
    We have measured the azimuthal anisotropy of pi0's for 1 < pT < 18 GeV/c for Au+Au collisions at sqrt s_NN = 200 GeV. The observed anisotropy shows a gradual decrease in 3 < pT < 7 - 10 GeV/c, but remains positive beyond 10 GeV/c. The magnitude of this anisotropy is under-predicted, up to at least 10 GeV/c, by current perturbative QCD (pQCD) energy-loss model calculations. An estimate of the increase in anisotropy expected from initial-geometry modification due to gluon saturation effects and initial-geometry fluctuations is insufficient to account for this discrepancy. Calculations which implement a path length dependence steeper than what is implied by current pQCD energy-loss models, show reasonable agreement with the data.Comment: 384 authors, 6 pages text, 3 figures. Submitted to Phys. Rev. Lett. Plain text data tables for the points plotted in figures for this and previous PHENIX publications are (or will be) publicly available at http://www.phenix.bnl.gov/papers.htm

    ϕ\phi meson production in dd++Au collisions at sNN=200\sqrt{s_{_{NN}}}=200 GeV

    Full text link
    The PHENIX experiment has measured ϕ\phi meson production in dd++Au collisions at sNN=200\sqrt{s_{_{NN}}}=200 GeV using the dimuon and dielectron decay channels. The ϕ\phi meson is measured in the forward (backward) dd-going (Au-going) direction, 1.2<y<2.21.2<y<2.2 (2.2<y<1.2-2.2<y<-1.2) in the transverse-momentum (pTp_T) range from 1--7 GeV/cc, and at midrapidity y<0.35|y|<0.35 in the pTp_T range below 7 GeV/cc. The ϕ\phi meson invariant yields and nuclear-modification factors as a function of pTp_T, rapidity, and centrality are reported. An enhancement of ϕ\phi meson production is observed in the Au-going direction, while suppression is seen in the dd-going direction, and no modification is observed at midrapidity relative to the yield in pp++pp collisions scaled by the number of binary collisions. Similar behavior was previously observed for inclusive charged hadrons and open heavy flavor indicating similar cold-nuclear-matter effects.Comment: 484 authors, 16 pages, 12 figures, 6 tables. v1 is the version accepted for publication in Phys. Rev. C. Data tables for the points plotted in the figures are given in the paper itsel
    corecore