25,306 research outputs found

    3D Modeling of the Magnetization of Superconducting Rectangular-Based Bulks and Tape Stacks

    Full text link
    In recent years, numerical models have become popular and powerful tools to investigate the electromagnetic behavior of superconductors. One domain where this advances are most necessary is the 3D modeling of the electromagnetic behavior of superconductors. For this purpose, a benchmark problem consisting of superconducting cube subjected to an AC magnetic field perpendicular to one of its faces has been recently defined and successfully solved. In this work, a situation more relevant for applications is investigated: a superconducting parallelepiped bulk with the magnetic field parallel to two of its faces and making an angle with the other one without and with a further constraint on the possible directions of the current. The latter constraint can be used to model the magnetization of a stack of high-temperature superconductor tapes, which are electrically insulated in one direction. For the present study three different numerical approaches are used: the Minimum Electro-Magnetic Entropy Production (MEMEP) method, the HH-formulation of Maxwell's equations and the Volume Integral Method (VIM) for 3D eddy currents computation. The results in terms of current density profiles and energy dissipation are compared, and the differences in the two situations of unconstrained and constrained current flow are pointed out. In addition, various technical issues related to the 3D modeling of superconductors are discussed and information about the computational effort required by each model is provided. This works constitutes a concrete result of the collaborative effort taking place within the HTS numerical modeling community and will hopefully serve as a stepping stone for future joint investigations

    Vector magnetic field sensing by single nitrogen vacancy center in diamond

    Full text link
    In this Letter, we proposed and experimentally demonstrated a method to detect vector magnetic field with a single nitrogen vacancy (NV) center in diamond. The magnetic field in parallel with the axis of the NV center can be obtained by detecting the electron Zeeman shift, while the Larmor precession of an ancillary nuclear spin close to the NV center can be used to measure the field perpendicular to the axis. Experimentally, both the Zeeman shift and Larmor precession can be measured through the fluorescence from the NV center. By applying additional calibrated magnetic fields, complete information of the vector magnetic field can be achieved with such a method. This vector magnetic field detection method is insensitive to temperature fluctuation and it can be applied to nanoscale magnetic measurement.Comment: 5 pages, 5 figure

    Ambiguities in recurrence-based complex network representations of time series

    Full text link
    Recently, different approaches have been proposed for studying basic properties of time series from a complex network perspective. In this work, the corresponding potentials and limitations of networks based on recurrences in phase space are investigated in some detail. We discuss the main requirements that permit a feasible system-theoretic interpretation of network topology in terms of dynamically invariant phase-space properties. Possible artifacts induced by disregarding these requirements are pointed out and systematically studied. Finally, a rigorous interpretation of the clustering coefficient and the betweenness centrality in terms of invariant objects is proposed

    Coupled channel effects in pion pion S-wave interaction

    Full text link
    We study coupled channel effects upon isospin I=2 and I=0 ππ\pi\pi S-wave interaction. With introduction of the ππρρππ\pi\pi\to\rho\rho\to\pi\pi coupled channel box diagram contribution into ππ\pi\pi amplitude in addition to ρ\rho and f2(1270)f_2 (1270) exchange, we reproduce the ππ\pi \pi I=2 S-wave and D-wave scattering phase shifts and inelasticities up to 2 GeV quite well in a K-matrix formalism. For I=0 case, the same ππρρππ\pi\pi\to\rho\rho\to\pi\pi box diagram is found to give the largest contribution for the inelasticity among all possible coupled channels including ππωωππ\pi\pi\to\omega\omega\to\pi\pi, ππKKˉππ\pi\pi\to K \bar{K}\to\pi\pi. We also show why the broad σ\sigma appears narrower in production processes than in ππ\pi\pi scattering process.Comment: 5 pages, 7 figure

    The role of the N*(1535) resonance and the pi^- p --> KY amplitudes in the OZI forbidden pi N --> phi N reaction

    Get PDF
    We study the pi N --> phi N reaction close to the phi N threshold within the chiral unitary approach, by combining the pi^- p --> K^+ Sigma^-, pi^- p --> K^0 Sigma^0 and pi^- p --> K^0 Lambda amplitudes with the coupling of the phi to the K components of the final states of these reactions via quantum loops. We obtain a good agreement with experiment when the dominant pi^- p --> K^0 Lambda amplitude is constrained with its experimental cross section. We also evaluate the coupling of the N*(1535) to phi N and find a moderate coupling as a consequence of partial cancellation of the large KY components of the N*(1535). We also show that the N*(1535) pole approximation is too small to reproduce the measured cross section for the pi N --> phi N reaction.Comment: 10 pages, 6 figure

    Uniqueness and Non-uniqueness in the Einstein Constraints

    Full text link
    The conformal thin sandwich (CTS) equations are a set of four of the Einstein equations, which generalize the Laplace-Poisson equation of Newton's theory. We examine numerically solutions of the CTS equations describing perturbed Minkowski space, and find only one solution. However, we find {\em two} distinct solutions, one even containing a black hole, when the lapse is determined by a fifth elliptic equation through specification of the mean curvature. While the relationship of the two systems and their solutions is a fundamental property of general relativity, this fairly simple example of an elliptic system with non-unique solutions is also of broader interest.Comment: 4 pages, 4 figures; abstract and introduction rewritte
    corecore