549 research outputs found

    Excessive Memory Usage of the ELLPACK Sparse Matrix Storage Scheme throughout the Finite Element Computations

    Get PDF
    Sparse matrices are occasionally encountered during solution of various problems by means of numerical methods, particularly the finite element method. ELLPACK sparse matrix storage scheme, one of the most widely used methods due to its implementation ease, is investigated in this study. The scheme uses excessive memory due to its definition. For the conventional finite element method, where the node elements are used, the excessive memory caused by redundant entries in the ELLPACK sparse matrix storage scheme becomes negligible for large scale problems. On the other hand, our analyses show that the redundancy is still considerable for the occasions where facet or edge elements have to be used

    Uncertainty analysis for seismic hazard in Northern and Central Italy

    Get PDF
    In this study we examine uncertainty and parametric sensitivity of Peak Ground Acceleration (PGA) and 1-Hz Spectral Acceleration (1-Hz SA) in probabilistic seismic hazard maps (10% probability of exceedance in 50 years) of Northern and Central Italy. The uncertainty in hazard is estimated using a Monte Carlo approach to randomly sample a logic tree that has three input-variables branch points representing alternative values for bvalue, maximum magnitude (Mmax) and attenuation relationships. Uncertainty is expressed in terms of 95% confidence band and Coefficient Of Variation (COV). The overall variability of ground motions and their sensitivity to each parameter of the logic tree are investigated. The largest values of the overall 95% confidence band are around 0.15 g for PGA in the Friuli and Northern Apennines regions and around 0.35 g for 1-Hz SA in the Central Apennines. The sensitivity analysis shows that the largest contributor to seismic hazard variability is uncertainty in the choice of ground-motion attenuation relationships, especially in the Friuli Region (∼0.10 g) for PGA and in the Friuli and Central Apennines regions (∼0.15 g) for 1-Hz SA. This is followed by the variability of the b-value: its main contribution is evident in the Friuli and Central Apennines regions for both 1-Hz SA (∼0.15 g) and PGA (∼0.10 g). We observe that the contribution of Mmax to seismic hazard variability is negligible, at least for 10% exceedance in 50-years hazard. The overall COV map for PGA shows that the uncertainty in the hazard is larger in the Friuli and Northern Apennine regions, around 20-30%, than the Central Apennines and Northwestern Italy, around 10-20%. The overall uncertainty is larger for the 1-Hz SA map and reaches 50- 60% in the Central Apennines and Western Alps

    The 2012 Ferrara seismic sequence: Regional crustal structure, earthquake sources, and seismic hazard

    Get PDF
    Inadequate seismic design codes can be dangerous, particularly when they underestimate the true hazard. In this study we use data from a sequence of moderate-sized earthquakes in northeast Italy to validate and test a regional wave propagation model which, in turn, is used to under- stand some weaknesses of the current design spectra. Our velocity model, while regionalized and somewhat ad hoc, is consistent with geophysical observations and the local geology. In the 0.02–0.1 Hz band, this model is validated by using it to calculate moment tensor solutions of 20 earth- quakes (5.6 MW 3.2) in the 2012 Ferrara, Italy, seismic sequence. The seismic spectra observed for the relatively small main shock significantly exceeded the design spectra to be used in the area for critical structures. Observations and synthetics reveal that the ground motions are dominated by long-duration surface waves, which, apparently, the design codes do not adequately anticipate. In light of our results, the present seismic hazard assessment in the entire Pianura Padana, including the city of Milan, needs to be re-evaluated. Citation: Malagnini, L., R. B. Herrmann, I. Munafò, M. Buttinelli, M. Anselmi, A. Akinci, and E. Boschi (2012), The 2012 Ferrara seismic sequence: Regional crustal structure, earthquake sources, and seismic hazard, Geophys. Res. Lett., 39, L19302, doi:10.1029/ 2012GL053214

    Effect of time-dependence on probabilistic seismic hazard maps and deaggregation for the central apennines, Italy

    Get PDF
    We produce probabilistic seismic hazard assessments for the Central Apennines, Italy, using time-dependent models that are characterized using a Brownian Passage Time (BPT) recurrence model. Using aperiodicity parameters,  of 0.3, 0.5, and 0.7, we examine the sensitivity of the probabilistic ground motion and its deaggregation to these parameters. For the seismic source model we incorporate both smoothed historical seismicity over the area and geological information on faults. We use the maximum magnitude model for the fault sources together with a uniform probability of rupture along the fault (floating fault model) to model fictitious faults to account for earthquakes that cannot be correlated with known geologic structural segmentation. We show maps for peak ground acceleration (PGA) and 1.0-Hz spectral acceleration (SA1) on rock having 10% probability of exceedence (PE) in 50 years. We produce maps to compare the separate contributions of smoothed seismicity and fault components. In addition we construct maps that show sensitivity of the hazard for different  parameters and the Poisson model. For the Poisson model, the addition of fault sources to the smoothed seismicity raises the hazard by 50 % at locations where the smoothed seismicity contributes the highest hazard, and up to 100 % at locations where the hazard from smoothed seismicity is low. For the strongest aperiodicity parameter (smallest ), the hazard may further increase 60-80 % or more or may decrease by as much as 20 %, depending on the recency of the last event on the fault that dominates the hazard at a given site. In order to present the most likely earthquake magnitude and/or the most likely source-site distance for scenario studies, we deaggregate the seismic hazard for SA1 and PGA for two important cities (Roma and l’Aquila) . For PGA, both locations show the predominance of local sources, having magnitudes of about 5.3 and 6.5 respectively. For SA1 at a site in Rome, there is significant contribution from local smoothed seismicity, and an additional contribution from the more distant Apennine faults having magnitude around 6.8. For l’Aquila, the predominant sources remain local. In order to show the variety of impact of different  values we also obtained deaggregations for another three sites. In general, as  decreases (periodicity increases), the deaggregation indicates that the hazard is highest near faults with the highest earthquakes rates. This effect is strongest for the long-period (1 s) ground motions

    Ocular surface epithelia contain ABCG2-dependent side population cells exhibiting features associated with stem cells.

    Get PDF
    When cell populations are incubated with the DNA-binding dye Hoechst 33342 and subjected to flow cytometry analysis for Hoechst 33342 emissions, active efflux of the dye by the ABCG2/BCRP1 transporter causes certain cells to appear as a segregated cohort, known as a side population (SP). Stem cells from several tissues have been shown to possess the SP phenotype. As the lack of specific surface markers has hindered the isolation and subsequent biochemical characterization of epithelial stem cells this study sought to determine the existence of SP cells and expression of ABCG2 in the epithelia of the ocular surface and evaluate whether such SP cells had features associated with epithelial stem cells. Human and rabbit limbal-corneal and conjunctival epithelial cells were incubated with Hoechst 33342, and analyzed and sorted by flow cytometry. Sorted cells were subjected to several tests to determine whether the isolated SP cells displayed features consistent with the stem cell phenotype. Side populations amounting to \u3c1% of total cells, which were sensitive to the ABCG2-inhibitor fumitremorgin C, were found in the conjunctival and limbal epithelia, but were absent from the stem cell-free corneal epithelium. Immunohistochemistry was used to establish the spatial expression pattern of ABCG2. The antigen was detected in clusters of conjunctival and limbal epithelia basal cells but was not present in the corneal epithelium. SP cells were characterized by extremely low light side scattering and contained a high percentage of cells that: showed slow cycling prior to tissue collection; exhibited an initial delay in proliferation after culturing; and displayed clonogenic capacity and resistance to phorbol-induced differentiation; all features that are consistent with a stem cell phenotype

    Simulating earthquake scenarios in the European Project LESSLOSS: the case of the metropolitan area of Lisbon (MAL)

    Get PDF
    In the framework of the ongoing European project “LESSLOSS – Risk Mitigation for Earthquakes and Landslides” two sub-projects are devoted to earthquake disaster scenario predictions and loss modeling for urban areas and infrastructures. This paper is dealing with the sub-project 10, SP10, Task Programme “Scenario earthquake definitions for three cities”. Finite-fault seismological models are proposed to compute the earthquake scenarios for three urban areas – Istanbul (Turkey), Lisbon (Portugal) and Thessaloniki (Greece). For each case study, ground motion scenarios are developed for the most probable two events with different return periods, locations and magnitudes derived from historical and geological data. In this study, we simulate the accelerometric time series and response spectra for high frequency ground motion in the city of Lisbon and surrounding counties (Metropolitan Area of Lisbon), using two possible earthquake models: the inland source area of Lower Tagus Valley, M 5.7 (4.7) and a hypothesis of the offshore source area of the 1755 Lisbon, M 7.6. The non-stationary stochastic method RSSIM (Carvalho et al. 2004) and a new hybrid stochastic-deterministic approach, DSM (Pacor et al., 2005) are used in order to evaluate the ground shaking and to characterize its spatial variability. Then the site effects are evaluated by means of an equivalent stochastic non-linear one-dimensional ground response analysis of stratified soil profile units properly designed. Results are here presented in terms of PGA maps, for offshore and inland scenarios. The mean and worst shaking scenarios for the Metropolitan Area of Lisbon have been delineated at the bedrock. Local effects amplify the synthetic PGA values by approximately a factor of 2. This means that PGA values computed for bedrock in Lisbon city can increase from 0.12g up to 0.25g and up to 0.5g in surroundings, for the inland scenario, and from 0.045g up to 0.090g for a M7.6 offshore scenario

    Resistivity studies under hydrostatic pressure on a low-resistance variant of the quasi-2D organic superconductor kappa-(BEDT-TTF)2Cu[N(CN)2]Br: quest for intrinsic scattering contributions

    Full text link
    Resistivity measurements have been performed on a low (LR)- and high (HR)-resistance variant of the kappa-(BEDT-TTF)_2Cu[N(CN)_2]Br superconductor. While the HR sample was synthesized following the standard procedure, the LR crystal is a result of a somewhat modified synthesis route. According to their residual resistivities and residual resistivity ratios, the LR crystal is of distinctly superior quality. He-gas pressure was used to study the effect of hydrostatic pressure on the different transport regimes for both variants. The main results of these comparative investigations are (i) a significant part of the inelastic-scattering contribution, which causes the anomalous rho(T) maximum in standard HR crystals around 90 K, is sample dependent, i.e. extrinsic in nature, (ii) the abrupt change in rho(T) at T* approx. 40 K from a strongly temperature-dependent behavior at T > T* to an only weakly T-dependent rho(T) at T < T* is unaffected by this scattering contribution and thus marks an independent property, most likely a second-order phase transition, (iii) both variants reveal a rho(T) proportional to AT^2 dependence at low temperatures, i.e. for T_c < T < T_0, although with strongly sample-dependent coefficients A and upper bounds for the T^2 behavior measured by T_0. The latter result is inconsistent with the T^2 dependence originating from coherent Fermi-liquid excitations.Comment: 8 pages, 6 figure

    DETERMINISTIC SCENARIOS AS INPUT MOTION FOR LOSS ASSESSMENT

    Get PDF
    A predominantly deterministic viewpoint has been adopted for computing seismic ground motion both for urban areas (SP10) and infrastructures loss modeling (SP11) at three selected areas: the cities of Lisbon (Portugal) and Thessaloniki (Greece), and the metropolis of Istanbul (Turkey). The generation of earthquake ground motion scenarios involves both the particular choice of earthquake sources with associated fault rupture parameters, and the ensuing ground motion field calculated by an appropriate numerical tool, or empirically estimated, at a set of selected points within the urban area of interest. Ground shaking values are predicted for rock conditions and for two distinct frequency bands, i.e. the high frequency range (from 1.0 Hz to 4-5 Hz) in the case of damage evaluation for the vast majority of ordinary building, and the low frequency (≤ 2 Hz) more appropriate for lifeline system damage assessment. The advanced simulation techniques allowed to properly consider the finite fault effects and directivity, which imply extreme expected values, and they are capable of quantifying the spatial variability of the ground motion near the extended fault

    Simulating earthquake scenarios in the European Project LESSLOSS: the case of the metropolitan area of Lisbon (MAL)

    Get PDF
    In the framework of the ongoing European project “LESSLOSS – Risk Mitigation for Earthquakes and Landslides” two sub-projects are devoted to earthquake disaster scenario predictions and loss modeling for urban areas and infrastructures. This paper is dealing with the sub-project 10, SP10, Task Programme “Scenario earthquake definitions for three cities”. Finite-fault seismological models are proposed to compute the earthquake scenarios for three urban areas – Istanbul (Turkey), Lisbon (Portugal) and Thessaloniki (Greece). For each case study, ground motion scenarios are developed for the most probable two events with different return periods, locations and magnitudes derived from historical and geological data. In this study, we simulate the accelerometric time series and response spectra for high frequency ground motion in the city of Lisbon and surrounding counties (Metropolitan Area of Lisbon), using two possible earthquake models: the inland source area of Lower Tagus Valley, M 5.7 (4.7) and a hypothesis of the offshore source area of the 1755 Lisbon, M 7.6. The non-stationary stochastic method RSSIM (Carvalho et al. 2004) and a new hybrid stochastic-deterministic approach, DSM (Pacor et al., 2005) are used in order to evaluate the ground shaking and to characterize its spatial variability. Then the site effects are evaluated by means of an equivalent stochastic non-linear one-dimensional ground response analysis of stratified soil profile units properly designed. Results are here presented in terms of PGA maps, for offshore and inland scenarios. The mean and worst shaking scenarios for the Metropolitan Area of Lisbon have been delineated at the bedrock. Local effects amplify the synthetic PGA values by approximately a factor of 2. This means that PGA values computed for bedrock in Lisbon city can increase from 0.12g up to 0.25g and up to 0.5g in surroundings, for the inland scenario, and from 0.045g up to 0.090g for a M7.6 offshore scenario

    Stationary State Solutions of a Bond Diluted Kinetic Ising Model: An Effective-Field Theory Analysis

    Full text link
    We have examined the stationary state solutions of a bond diluted kinetic Ising model under a time dependent oscillating magnetic field within the effective-field theory (EFT) for a honeycomb lattice (q=3)(q=3). Time evolution of the system has been modeled with a formalism of master equation. The effects of the bond dilution, as well as the frequency (ω)(\omega) and amplitude (h/J)(h/J) of the external field on the dynamic phase diagrams have been discussed in detail. We have found that the system exhibits the first order phase transition with a dynamic tricritical point (DTCP) at low temperature and high amplitude regions, in contrast to the previously published results for the pure case \cite{Ling}. Bond dilution process on the kinetic Ising model gives rise to a number of interesting and unusual phenomena such as reentrant phenomena and has a tendency to destruct the first-order transitions and the DTCP. Moreover, we have investigated the variation of the bond percolation threshold as functions of the amplitude and frequency of the oscillating field.Comment: 8 pages, 4 figure
    corecore