14 research outputs found

    Enzymatic profiles associated with the evolution of the lignocellulosic fraction during industrial-scale composting of anthropogenic waste: Comparative analysis

    Get PDF
    In the new European Waste Law, composting is proposed as one of the best options to properly manage organic waste of anthropogenic origin. Currently, the massive generation of this type of waste, as well as its heterogeneity, makes difficult in many cases control this process of degradation on an industrial scale. In this work, 15 facilities were selected based on 5 types of organic waste: Urban Solid Waste, Vegetable Waste, Sewage Sludges, Agrifood Waste and “Alpeorujo”. The samples were collected in different thermal phases. The results revealed very different physicochemical and enzymatic profiles, as well as different degrees of humification depending on the process and the raw materials. However, parameters such as ÎČ-glucosidase, amylase, lignin/holocellulose ratio and humification rate showed similar trends in all cases. All of them could act as important indicators to evaluate the quality of a composting process, despite the heterogeneity of the starting materials

    Uncovering new indicators to predict stability, maturity and biodiversity of compost on an industrial scale

    Get PDF
    Currently, the metagenomic study of the composting process has gained great importance since it has allowed the identification of the existence of microorganisms that, until now, had not been isolated during the process by traditional techniques. However, it is still complex to determine which bioindicators could reveal the degree of maturity and stability of a particular compost. Thereby, the main objective of this work was to demonstrate the possible correlation between traditional parameters of maturity and stability of compost, with other indicators of biodiversity in products highly heterogeneous from composting processes on an industrial scale. The results demonstrated the enormous influence of the raw materials in characterizing the products obtained. Even so, important relationships were established between the Chao1 and Shannon indexes, and certain parameters related to the maturity, stability and toxicity of the samples, such as nitrification index, humification rate, phenolic content, germination index or oxygen consumptio

    The polyadenylation factor FIP1 is important for plant development and root responses to abiotic stresses

    Get PDF
    17 Pág.Root development and its response to environmental changes is crucial for whole plant adaptation. These responses include changes in transcript levels. Here, we show that the alternative polyadenylation (APA) of mRNA is important for root development and responses. Mutations in FIP1, a component of polyadenylation machinery, affects plant development, cell division and elongation, and response to different abiotic stresses. Salt treatment increases the amount of poly(A) site usage within the coding region and 5' untranslated regions (5'-UTRs), and the lack of FIP1 activity reduces the poly(A) site usage within these non-canonical sites. Gene ontology analyses of transcripts displaying APA in response to salt show an enrichment in ABA signaling, and in the response to stresses such as salt or cadmium (Cd), among others. Root growth assays show that fip1-2 is more tolerant to salt but is hypersensitive to ABA or Cd. Our data indicate that FIP1-mediated alternative polyadenylation is important for plant development and stress responses.This research was supported by grants from the Spanish Government (BIO2017-82209-R and BIO2014-52091-R to J.C.P.) and by the "Severo Ochoa Program for Centres of Excellence in R&D” from the Agencia Estatal de Investigación of Spain (grant SEV-2016-0672 (2017-2021)) to the CBGP. B.T. was supported by a predoctoral fellowship (BES-2012-054056) from MINECO (Spain). C.M. was supported by a Marie SkƂodowska-Curie fellowship (Root Barriers 655406) from the European Commission. S.M.B is supported by an Howard Hughes Medical Institute (HHMI) Faculty Scholar Fellowship.Peer reviewe

    Treatment of bone tumours by radiofrequency thermal ablation

    Get PDF
    Radiofrequency thermal ablation (RFTA) is considered the treatment of choice for osteoid osteomas, in which it has long been safely used. Other benign conditions (chondroblastoma, osteoblastoma, giant cell tumour, etc.) can also be treated by this technique, which is less invasive than traditional surgical procedures. RFTA ablation is also an option for the palliation of localized, painful osteolytic metastatic and myeloma lesions. The reduction in pain improves the quality of life of patients with cancer, who often have multiple morbidities and a limited life expectancy. In some cases, these patients are treated with RFTA because conventional therapies (surgery, radiotherapy, chemotherapy, etc.) have been exhausted. In other cases, it is combined with conventional therapies or other percutaneous treatments, e.g., cementoplasty, offering faster pain relief and bone strengthening. A multidisciplinary approach to the management of these patients is recommended to select the optimal treatment, including orthopaedic surgeons, neurosurgeons, medical and radiation oncologists and interventional radiologists

    Endoreplication Controls Cell Fate Maintenance

    Get PDF
    Cell-fate specification is typically thought to precede and determine cell-cycle regulation during differentiation. Here we show that endoreplication, also known as endoreduplication, a specialized cell-cycle variant often associated with cell differentiation but also frequently occurring in malignant cells, plays a role in maintaining cell fate. For our study we have used Arabidopsis trichomes as a model system and have manipulated endoreplication levels via mutants of cell-cycle regulators and overexpression of cell-cycle inhibitors under a trichome-specific promoter. Strikingly, a reduction of endoreplication resulted in reduced trichome numbers and caused trichomes to lose their identity. Live observations of young Arabidopsis leaves revealed that dedifferentiating trichomes re-entered mitosis and were re-integrated into the epidermal pavement-cell layer, acquiring the typical characteristics of the surrounding epidermal cells. Conversely, when we promoted endoreplication in glabrous patterning mutants, trichome fate could be restored, demonstrating that endoreplication is an important determinant of cell identity. Our data lead to a new model of cell-fate control and tissue integrity during development by revealing a cell-fate quality control system at the tissue level

    Clonal chromosomal mosaicism and loss of chromosome Y in elderly men increase vulnerability for SARS-CoV-2

    Full text link
    The pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2, COVID-19) had an estimated overall case fatality ratio of 1.38% (pre-vaccination), being 53% higher in males and increasing exponentially with age. Among 9578 individuals diagnosed with COVID-19 in the SCOURGE study, we found 133 cases (1.42%) with detectable clonal mosaicism for chromosome alterations (mCA) and 226 males (5.08%) with acquired loss of chromosome Y (LOY). Individuals with clonal mosaic events (mCA and/or LOY) showed a 54% increase in the risk of COVID-19 lethality. LOY is associated with transcriptomic biomarkers of immune dysfunction, pro-coagulation activity and cardiovascular risk. Interferon-induced genes involved in the initial immune response to SARS-CoV-2 are also down-regulated in LOY. Thus, mCA and LOY underlie at least part of the sex-biased severity and mortality of COVID-19 in aging patients. Given its potential therapeutic and prognostic relevance, evaluation of clonal mosaicism should be implemented as biomarker of COVID-19 severity in elderly people. Among 9578 individuals diagnosed with COVID-19 in the SCOURGE study, individuals with clonal mosaic events (clonal mosaicism for chromosome alterations and/or loss of chromosome Y) showed an increased risk of COVID-19 lethality

    The co-chaperone HOP participates in TIR1 stabilisation and in auxin response in plants

    Get PDF
    12 PĂĄg. Centro de BiotecnologĂ­a y GenĂłmica de Plantas (CBGP)HOP (HSP70-HSP90 organising protein) is a conserved family of co-chaperones well known in mammals for its role in the folding of signalling proteins associated with development. In plants, HOP proteins have been involved in the response to multiple stresses, but their role in plant development remains elusive. Herein, we describe that the members of the HOP family participate in different aspects of plant development as well as in the response to warm temperatures through the regulation of auxin signalling. Arabidopsis hop1 hop2 hop3 triple mutant shows different auxin-related phenotypes and a reduced auxin sensitivity. HOP interacts with TIR1 auxin coreceptor in vivo. Furthermore, TIR1 accumulation and auxin transcriptional response are reduced in the hop1 hop2 hop3 triple mutant, suggesting that HOP's function in auxin signalling is related, at least, to TIR1 interaction and stabilisation. Interestingly, HOP proteins form part of the same complexes as SGT1b (a different HSP90 co-chaperone) and these co-chaperones synergistically cooperate in auxin signalling. This study provides relevant data about the role of HOP in auxin regulation in plants and uncovers that both co-chaperones, SGT1b and HOP, cooperate in the stabilisation of common targets involved in plant development.This study is supported by the project RTI2018-095946-B-I00 from MICIU to M. Mar Castellano, BIO2017-82209-R and PID2020-113479RB-I00 to Juan C. del Pozo, and by ‘Severo Ochoa Programme for Centres of Excellence in R&D’ from the Agencia Estatal de InvestigaciĂłn of Spain [grant SEV-2016-0672 (2017–2021) to the CBGP]. In the frame of this latter programme, Silvina Mangano and RenĂ© Toribio were supported with postdoctoral contracts.Peer reviewe
    corecore