51 research outputs found

    Characterization of an enzymatic packed-bed microreactor: Experiments and modeling

    Get PDF
    A micro packed-bed reactor (µPBR) based on two-parallel-plates configuration with immobilized Candida antarctica lipase B in the form of porous particles (Novozym® 435) was theoretically and experimentally characterized. A residence time distribution (RTD) within µPBRs comprising various random distributions of particles placed in one layer was computationally predicted by a mesoscopic lattice Boltzmann (LB) method. Numerical simulations were compared with measurements of RTD, obtained by stimulus-response experiment with a pulse input using glucose as a tracer, monitored by an electrochemical glucose oxidase microbiosensor integrated with the reactor. The model was validated by a good agreement between the experimental data and predictions of LB model at different conditions. The developed µPBR was scaled-up in length and width comprising either a single or two layers of Novozym® 435 particles and compared regarding the selected enzyme-catalyzed transesterification. A linear increase in the productivity with the increase in all dimensions of the µPBR between two-plates demonstrated very efficient and simple approach for the capacity rise. Further characterization of µPBRs of various sizes using the piezoresistive pressure sensor revealed very low pressure drops as compared to their conventional counterparts and thereby great applicability for production systems based on numbering-up approach

    Image analysis technique as a tool to identify morphological changes in Trametes versicolor pellets according to exopolysaccharide or laccase production

    Get PDF
    Image analysis technique was applied to identify morphological changes of pellets from white-rot fungus Trametes versicolor on agitated submerged cultures during the production of exopolysaccharide (EPS) or ligninolytic enzymes. Batch tests with four different experimental conditions were carried out. Two different culture media were used, namely yeast medium or Trametes defined medium and the addition of lignolytic inducers as xylidine or pulp and paper industrial effluent were evaluated. Laccase activity, EPS production, and final biomass contents were determined for batch assays and the pellets morphology was assessed by image analysis techniques. The obtained data allowed establishing the choice of the metabolic pathways according to the experimental conditions, either for laccase enzymatic production in the Trametes defined medium, or for EPS production in the rich Yeast Medium experiments. Furthermore, the image processing and analysis methodology allowed for a better comprehension of the physiological phenomena with respect to the corresponding pellets morphological stages.The authors acknowledge Portucel-Empresa de Celulose e Papel, Cacia, Portugal, SA for the pulp and paper Kraft effluent used in this work. This work was funded by FEDER Funds through the Programa Operacional Factores de Competitividade-COMPETE, and national funds through FCT-Fundacao para a Ciencia e a Tecnologia under the projects PEst-C/CTM/LA/0011/2013 and PEst-C/EQB/LA0020/2013. A. P. M. Tavares acknowledge the financial support of (Programme Ciencia 2008) FCT, Portugal

    Clinical validity assessment of genes frequently tested on intellectual disability/autism sequencing panels.

    Full text link
    [en] PURPOSE: Neurodevelopmental disorders (NDDs), such as intellectual disability (ID) and autism spectrum disorder (ASD), exhibit genetic and phenotypic heterogeneity, making them difficult to differentiate without a molecular diagnosis. The Clinical Genome Resource Intellectual Disability/Autism Gene Curation Expert Panel (GCEP) uses systematic curation to distinguish ID/ASD genes that are appropriate for clinical testing (ie, with substantial evidence supporting their relationship to disease) from those that are not. METHODS: Using the Clinical Genome Resource gene-disease validity curation framework, the ID/Autism GCEP classified genes frequently included on clinical ID/ASD testing panels as Definitive, Strong, Moderate, Limited, Disputed, Refuted, or No Known Disease Relationship. RESULTS: As of September 2021, 156 gene-disease pairs have been evaluated. Although most (75%) were determined to have definitive roles in NDDs, 22 (14%) genes evaluated had either Limited or Disputed evidence. Such genes are currently not recommended for use in clinical testing owing to the limited ability to assess the effect of identified variants. CONCLUSION: Our understanding of gene-disease relationships evolves over time; new relationships are discovered and previously-held conclusions may be questioned. Without periodic re-examination, inaccurate gene-disease claims may be perpetuated. The ID/Autism GCEP will continue to evaluate these claims to improve diagnosis and clinical care for NDDs

    Effect of Additions and Oxygen Partial Pressure on the Electromagnetic Properties of High Frequency MnZn Ferrites

    No full text
    The effect of dopant and low oxygen partial pressure during sintering on the magnetic properties of MnZn ferrites for use in high frequency power supplies was studied. A low partial pressure of oxygen in the sintering atmosphere and a proper temperature profile during sintering decrease the average grain size, while the dopant, which segregates to the outer grain region, increases the grain boundary resistivity resulting in a lowering of power loss

    pH-based one pot synthesis of biocompatible olive shaped inorganic particles.

    No full text
    A novel, single-step, one-pot method for preparation of inorganic hollow particles is introduced. The concept is grounded on the classical theory of nucleation of growth and can be carried out entirely at room temperature. Starting from an appropriate solution, precipitation and selective dissolution of inorganic nanoparticles are triggered by continuous addition of a salt while carefully controlling the pH. The approach is demonstrated on the example of hollow calcium phosphate particles using calcium carbonate solid nanoparticles as a template. The proposed synthesis procedure is simple and cheap and can be extended to other biocompatible compounds. It also can be upgraded with an additional in situ ste

    Multi-Attribute Modelling of Economic and Ecological Impacts of Cropping Systems

    No full text
    Modelling of economic and ecological impacts of genetically modified crops is a demanding task. We present some preliminary attempts made for the purpose of the ECOGEN project "Soil ecological and economic evaluation of genetically modified crops". One of the goals of the project is to develop a computer-based decision support system for the assessment of economic and ecological impacts of using genetically modified crops, with special emphasis on soil biology and ecology. The decision support system will be based on a rule-based model incorporating both economic and ecological criteria. In this paper we present some preliminary results of developing the integral model and describe four specific sub-models. The first two sub-models are concerned with ecology and assess the ecological impacts of various types of weed and pest control, respectively. The other two sub-models assess the economic impacts of cropping systems at the farm and regional level, respectively. All the models were developed using a qualitative multi-attribute modelling methodology, supported by the software tool DEXi
    corecore