539 research outputs found

    The Twist of the Draped Interstellar Magnetic Field Ahead of the Heliopause: A Magnetic Reconnection Driven Rotational Discontinuity

    Full text link
    Based on the difference between the orientation of the interstellar BISMB_{ISM} and the solar magnetic fields, there was an expectation that the magnetic field direction would rotate dramatically across the heliopause (HP). However, the Voyager 1 spacecraft measured very little rotation across the HP. Previously we showed that the BISMB_{ISM} twists as it approaches the HP and acquires a strong T component (East-West). Here we establish that reconnection in the eastern flank of the heliosphere is responsible for the twist. On the eastern flank the solar magnetic field has twisted into the positive N direction and reconnects with the Southward pointing component of the BISMB_{ISM}. Reconnection drives a rotational discontinuity (RD) that twists the BISMB_{ISM} into the -T direction and propagates upstream in the interstellar medium towards the nose. The consequence is that the N component of BISMB_{ISM} is reduced in a finite width band upstream of the HP. Voyager 1 currently measures angles (δ=sin−1(BN/B)\delta=sin^{-1}(B_{N}/B)) close to solar values. We present MHD simulations to support this scenario, suppressing reconnection in the nose region while allowing it in the flanks, consistent with recent ideas about reconnection suppression from diamagnetic drifts. The jump in plasma β\beta (the plasma to magnetic pressure) across the nose of HP is much greater than in the flanks because the heliosheath β\beta is greater there than in the flanks. Large-scale reconnection is therefore suppressed in the nose but not at the flanks. Simulation data suggest that BISMB_{ISM} will return to its pristine value 10−15 AU10-15~AU past the HP.Comment: 19 pages, 5 figures, submitte

    Seasonal variation of aerosol water uptake and its impact on the direct radiative effect at Ny-Ã…lesund, Svalbard

    Get PDF
    © Author(s) 2014. This work is distributed under the Creative Commons Attribution 3.0 LicenseIn this study we investigated the impact of water uptake by aerosol particles in ambient atmosphere on their optical properties and their direct radiative effect (ADRE, W m-2) in the Arctic at Ny-Ålesund, Svalbard, during 2008. To achieve this, we combined three models, a hygroscopic growth model, a Mie model and a radiative transfer model, with an extensive set of observational data. We found that the seasonal variation of dry aerosol scattering coefficients showed minimum values during the summer season and the beginning of fall (July-August-September), when small particles (< 100 nm in diameter) dominate the aerosol number size distribution. The maximum scattering by dry particles was observed during the Arctic haze period (March-April-May) when the average size of the particles was larger. Considering the hygroscopic growth of aerosol particles in the ambient atmosphere had a significant impact on the aerosol scattering coefficients: the aerosol scattering coefficients were enhanced by on average a factor of 4.30 ± 2.26 (mean ± standard deviation), with lower values during the haze period (March-April-May) as compared to summer and fall. Hygroscopic growth of aerosol particles was found to cause 1.6 to 3.7 times more negative ADRE at the surface, with the smallest effect during the haze period (March-April-May) and the highest during late summer and beginning of fall (July-August-September).Peer reviewe

    Modeling the Young Sun's Solar Wind and its Interaction with Earth's Paleomagnetosphere

    Full text link
    We present a focused parameter study of solar wind - magnetosphere interaction for the young Sun and Earth,  3.5~3.5 Ga ago, that relies on magnetohydrodynamic (MHD) simulations for both the solar wind and the magnetosphere. By simulating the quiescent young Sun and its wind we are able to propagate the MHD simulations up to Earth's magnetosphere and obtain a physically realistic solar forcing of it. We assess how sensitive the young solar wind is to changes in the coronal base density, sunspot placement and magnetic field strength, dipole magnetic field strength and the Sun's rotation period. From this analysis we obtain a range of plausible solar wind conditions the paleomagnetosphere may have been subject to. Scaling relationships from the literature suggest that a young Sun would have had a mass flux different from the present Sun. We evaluate how the mass flux changes with the aforementioned factors and determine the importance of this and several other key solar and magnetospheric variables with respect to their impact on the paleomagnetosphere. We vary the solar wind speed, density, interplanetary magnetic field strength and orientation as well as Earth's dipole magnetic field strength and tilt in a number of steady-state scenarios that are representative of young Sun-Earth interaction. This study is done as a first step of a more comprehensive effort towards understanding the implications of Sun-Earth interaction for planetary atmospheric evolution.Comment: 16 pages, 7 figure

    A mosaic of conserved and novel modes of gene expression and morphogenesis in mesoderm and muscle formation of a larval bivalve

    Get PDF
    The mesoderm gives rise to several key morphological features of bilaterian animals including endoskeletal elements and the musculature. A number of regulatory genes involved in mesoderm and/or muscle formation (e.g., Brachyury (Bra), even-skipped (eve), Mox, myosin II heavy chain (mhc)) have been identified chiefly from chordates and the ecdysozoans Drosophila and Caenorhabditis elegans, but data for non-model protostomes, especially those belonging to the ecdysozoan sister clade, Lophotrochozoa (e.g., flatworms, annelids, mollusks), are only beginning to emerge. Within the lophotrochozoans, Mollusca constitutes the most speciose and diverse phylum. Interestingly, however, information on the morphological and molecular underpinnings of key ontogenetic processes such as mesoderm formation and myogenesis remains scarce even for prominent molluscan sublineages such as the bivalves. Here, we investigated myogenesis and developmental expression of Bra, eve, Mox, and mhc in the quagga mussel Dreissena rostriformis, an invasive freshwater bivalve and an emerging model in invertebrate evodevo. We found that all four genes are expressed during mesoderm formation, but some show additional, individual sites of expression during ontogeny. While Mox and mhc are involved in early myogenesis, eve is also expressed in the embryonic shell field and Bra is additionally present in the foregut. Comparative analysis suggests that Mox has an ancestral role in mesoderm and possibly muscle formation in bilaterians, while Bra and eve are conserved regulators of mesoderm development of nephrozoans (protostomes and deuterostomes). The fully developed Dreissena veliger larva shows a highly complex muscular architecture, supporting a muscular ground pattern of autobranch bivalve larvae that includes at least a velum muscle ring, three or four pairs of velum retractors, one or two pairs of larval retractors, two pairs of foot retractors, a pedal plexus, possibly two pairs of mantle retractors, and the muscles of the pallial line, as well as an anterior and a posterior adductor. As is typical for their molluscan kin, remodelling and loss of prominent larval features such as the velum musculature and various retractor systems appear to be also common in bivalves

    Muscle-Directed Delivery of an AAV1 Vector Leads to Capsid-Specific T Cell Exhaustion in Nonhuman Primates and Humans

    Get PDF
    With the US Food and Drug Administration (FDA) and European Medicines Agency (EMA) approvals for Zolgensma, Luxturna, and Glybera, recombinant adeno-associated viruses (rAAVs) are considered efficient tools for gene transfer. However, studies in animals and humans demonstrate that intramuscular (IM) AAV delivery can trigger immune responses to AAV capsids and/or transgenes. IM delivery of rAAV1 in humans has also been described to induce tolerance to rAAV characterized by the presence of capsid-specific regulatory T cells (Tregs) in periphery. To understand mechanisms responsible for tolerance and parameters involved, we tested 3 muscle-directed administration routes in rhesus monkeys: IM delivery, venous limb perfusion, and the intra-arterial push and dwell method. These 3 methods were well tolerated and led to transgene expression. Interestingly, gene transfer in muscle led to Tregs and exhausted T cell infiltrates in situ at both day 21 and day 60 post-injection. In human samples, an in-depth analysis of the functionality of these cells demonstrates that capsid-specific exhausted T cells are detected after at least 5 years post-vector delivery and that the exhaustion can be reversed by blocking the checkpoint pathway. Overall, our study shows that persisting transgene expression after gene transfer in muscle is mediated by Tregs and exhausted T cells

    Measured and predicted aerosol light scattering enhancement factors at the high alpine site Jungfraujoch

    Get PDF
    Ambient relative humidity (RH) determines the water content of atmospheric aerosol particles and thus has an important influence on the amount of visible light scattered by particles. The RH dependence of the particle light scattering coefficient (&amp;sigma;&lt;sub&gt;sp&lt;/sub&gt;) is therefore an important variable for climate forcing calculations. We used a humidification system for a nephelometer which allows for the measurement of &amp;sigma;&lt;sub&gt;sp&lt;/sub&gt; at a defined RH in the range of 20–95%. In this paper we present measurements of light scattering enhancement factors &lt;i&gt;f&lt;/i&gt;(RH)=&amp;sigma;&lt;sub&gt;sp&lt;/sub&gt;(RH)/&amp;sigma;&lt;sub&gt;sp&lt;/sub&gt;(dry) from a 1-month campaign (May 2008) at the high alpine site Jungfraujoch (3580 m a.s.l.), Switzerland. Measurements at the Jungfraujoch are representative for the lower free troposphere above Central Europe. For this aerosol type hardly any information about the &lt;i&gt;f&lt;/i&gt;(RH) is available so far. At this site, &lt;i&gt;f&lt;/i&gt;(RH=85%) varied between 1.2 and 3.3. Measured &lt;i&gt;f&lt;/i&gt;(RH) agreed well with &lt;i&gt;f&lt;/i&gt;(RH) calculated with Mie theory using measurements of the size distribution, chemical composition and hygroscopic diameter growth factors as input. Good &lt;i&gt;f&lt;/i&gt;(RH) predictions at RH&amp;lt;85% were also obtained with a simplified model, which uses the Ångström exponent of &amp;sigma;&lt;sub&gt;sp&lt;/sub&gt;(dry) as input. RH influences further intensive optical aerosol properties. The backscatter fraction decreased by about 30% from 0.128 to 0.089, and the single scattering albedo increased on average by 0.05 at 85% RH compared to dry conditions. These changes in &amp;sigma;&lt;sub&gt;sp&lt;/sub&gt;, backscatter fraction and single scattering albedo have a distinct impact on the radiative forcing of the Jungfraujoch aerosol

    Hydrogen-induced ferromagnetism in ZnO single crystals investigated by Magnetotransport

    Full text link
    We investigated the electrical and magnetic properties of low-energy hydrogen-implanted ZnO single crystals with hydrogen concentrations up to 3 at.% in the first 20 nm surface layer between 10 K and 300 K. All samples showed clear ferromagnetic hysteresis loops at 300 K with a saturation magnetization up to 4 emu/g. The measured anomalous Hall effect agrees with the hysteresis loops measured by superconducting quantum interferometer device magnetometry. All the H-treated ZnO crystals exhibited a negative magnetoresistance up to the room temperature. The relative magnitude of the anisotropic magnetoresistance reaches 0.4 % at 250 K and 2 % at 10 K, exhibiting an anomalous, non-monotonous behavior and a change of sign below 100 K. All the experimental data indicate that hydrogen atoms alone in a few percent range trigger a magnetic order in a ZnO crystalline state. Hydrogen implantation turns out to be a simpler and effective method to generate a magnetic order in ZnO, which provides interesting possibilities for future applications due to the strong reduction of the electrical resistance

    The Phylogeography of Rabies in Grenada, West Indies, and Implications for Control

    Get PDF
    In Grenada, West Indies, rabies is endemic, and is thought to be maintained in a wildlife host, the small Indian mongoose (Herpestes auropunctatus) with occasional spillover into other hosts. Therefore, the present study was undertaken to improve understanding of rabies epidemiology in Grenada and to inform rabies control policy. Mongooses were trapped island-wide between April 2011 and March 2013 and examined for the presence of Rabies virus (RABV) antigen using the direct fluorescent antibody test (dFAT) and PCR, and for serum neutralizing antibodies (SNA) using the fluorescent antibody virus neutralization test (FAVN). An additional cohort of brain samples from clinical rabies suspects submitted between April 2011 and March 2014 were also investigated for the presence of virus. Two of the 171 (1.7%) live-trapped mongooses were RABV positive by FAT and PCR, and 20 (11.7%) had SNAs. Rabies was diagnosed in 31 of the submitted animals with suspicious clinical signs: 16 mongooses, 12 dogs, 2 cats and 1 goat. Our investigation has revealed that rabies infection spread from the northeast to the southwest of Grenada within the study period. Phylogenetic analysis revealed that the viruses from Grenada formed a monophyletic clade within the cosmopolitan lineage with a common ancestor predicted to have occurred recently (6–23 years ago), and are distinct from those found in Cuba and Puerto Rico, where mongoose rabies is also endemic. These data suggest that it is likely that this specific strain of RABV was imported from European regions rather than the Americas. These data contribute essential information for any potential rabies control program in Grenada and demonstrate the importance of a sound evidence base for planning interventions
    • …
    corecore