608 research outputs found

    Identification of the Thyroid Transcription Factor-1 as a Target for Rat MST2 Kinase

    Get PDF
    Abstract Thyroid transcription factor-1 (TTF-1) is a homeodomain-containing transcription factor that is required for thyroid-specific expression of the thyroglobulin and thyroperoxidase genes as well as for lung-specific expression of the surfactant protein A, B, and C and the CC10 and the HNF-3α genes. TTF-1 is a phosphoprotein, and the phosphorylation of TTF-1 has been studied already. However, the kinase(s) that could be responsible for this phosphorylation have not been known. In this paper we report the identification by in-gel kinase assay of a 56-kDa serine/threonine kinase that is able to phosphorylate TTF-1 in thyroid cells. The cloning of this kinase revealed that we had identified the rat homolog of the human MST2 kinase. The pathway in which human MST2 functions is not known; however, it does not appear to involve either mitogen-activated protein kinases such as Erk1 and Erk2 nor the stress-activated protein kinases such as JNK and p38. We show that the activity responsible for TTF-1 phosphorylation is constitutive in thyroid cells. Furthermore, we demonstrate that TTF-1 is phosphorylatedin vivo by rMST2 at the same residues that had been identified previously as the major phosphorylation sites. Thus, TTF-1 represents the first identified target of this class of protein kinases

    Transcriptional control of the forkhead thyroid transcription factor TTF-2 by thyrotropin, insulin, and insulin-like growth factor I

    Get PDF
    The hormonal regulation of both thyroglobulin and thyroperoxidase promoter activity in FRTL-5 thyroid cells takes place, at least in part, through a hormone-responsive element to which the thyroid transcription factor TTF-2 binds. The TTF-2 cDNA, encoded by the titf2 locus, has recently been cloned and classified as a member of the forkhead transcription factor family. Here, we demonstrate that TTF-2 mRNA levels become undetectable in FRTL-5 thyroid cells cultured for 4 days in 0.2% serum and in the absent of thyrotropin (TSH) and insulin. Addition of TSH, insulin or insulin-like growth factor I (IGF-I) to the culture medium increases the levels of this transcription factor in a dose- and time-dependent manner and requires ongoing protein synthesis. The TSH effect is greater than that produced by insulin or IGF-I and is similar to the effect produced by the cAMP analog forskolin. The TSH and insulin effects are additive. In all cases, the mRNA levels increase is accompanied by an increase in transcription rate, as demonstrated by run-off assays. These data demonstrate that the TTF-2 mRNA is under tight hormonal control. This is consistent with an important role for TTF-2 as a mediator of the transcriptional activation of thyroid-specific genes (thyroglobulin and thyroperoxidase) by TSH via cAMP and by insulin through the IGF-I receptor

    Redundant domains contribute to the transcriptional activity of the thyroid transcription factor 1.

    Get PDF
    The thyroid transcription factor 1 (TTF-1) is a homeodomain-containing protein implicated in the activation of thyroid-specific gene expression. Here we report that TTF-1 is capable of activating transcription from thyroglobulin and, to a lesser extent, thyroperoxidase gene promoters in nonthyroid cells. Full transcriptional activation of the thyroglobulin promoter by TTF-1 requires the presence of at least two TTF-1 binding sites. TTF-1 activates transcription via two functionally redundant transcriptional activation domains that as suggested by competition experiments, could use a common intermediary factor

    The Interaction between the Forkhead Thyroid Transcription Factor TTF-2 and the Constitutive Factor CTF/NF-1 Is Required for Efficient Hormonal Regulation of the Thyroperoxidase Gene Transcription

    Get PDF
    The forkhead thyroid-specific transcription factor TTF-2 is the main mediator of thyrotropin and insulin regulation of thyroperoxidase (TPO) gene expression. This function depends on multimerization and specific orientation of its DNA-binding site, suggesting that TTF-2 is part of a complex interaction network within the TPO promoter. This was confirmed by transfection experiments and by protein-DNA interaction studies, which demonstrated that CTF/NF1 proteins bind 10 base pairs upstream of the TTF-2- binding site to enhance its action in hormone-induced expression of the TPO gene. GST pull-down assays showed that TTF-2 physically interacts with CTF/NF1 proteins. In addition, we demonstrate that increasing the distance between both transcription factors binding sites by base pair insertion results in loss of promoter activity and in a drastic decrease on the ability of the promoter to respond to the hormones. CTF/NF1 is a family of transcription factors that contributes to constitutive and cell-type specific gene expression. Originally identified as factors implicated in the replication of adenovirus, this group of proteins (CTF/NF1-A, -B, -C, and - X) is now known to be involved in the regulation of several genes. In contrast to other reports regarding the involvement of these proteins in inducible gene expression, we show here that members of this family of transcription factors are regulated by hormones. With the use of specific CTF/NF1 DNA probes and antibodies we demonstrate that CTF/NF1-C is a thyrotropin-, cAMP-, and insulin-inducible protein. Thus CTF/NF1 proteins do not only mediate hormone-induced gene expression cooperating with TTF-2, but are themselves hormonally regulated. All these findings are clearly of important value in understanding the mechanisms governing the transcription regulation of RNA polymerase II promoters, which often contain binding sites for multiple transcription factors

    Physiology of acetic acid bacteria and their role in vinegar and fermented beverages

    Get PDF
    Acetic acid bacteria (AAB) have, for centuries, been important microorganisms in the production of fermented foods and beverages such as vinegar, kombucha, (water) kefir, and lambic beer. Their unique form of metabolism, known as â oxidativeâ fermentation, mediates the transformation of a variety of substrates into products, which are of importance in the food and beverage industry and beyond; the most well-known of which is the oxidation of ethanol into acetic acid. Here, a comprehensive review of the physiology of AAB is presented, with particular emphasis on their importance in the production of vinegar and fermented beverages. In addition, particular reference is addressed toward Gluconobacter oxydans due to its biotechnological applications, such as its role in vitamin C production. The production of vinegar and fermented beverages in which AAB play an important role is discussed, followed by an examination of the literature relating to the health benefits associated with consumption of these products. AAB hold great promise for future exploitation, both due to increased consumer demand for traditional fermented beverages such as kombucha, and for the development of new types of products. Further studies on the health benefits related to the consumption of these fermented products and guidelines on assessing the safety of AAB for use as microbial food cultures (starter cultures) are, however, necessary in order to take full advantage of this important group of microorganisms

    Финансово-экономический механизм функционирования кредитных союзов в Украине

    Get PDF
    Цель статьи - исследование финансово-экономического механизма функционирования кредитных союзов как альтернативного финансирования населения, что позволяет максимально приблизить финансовые услуги к потребителям, создать надлежащие условия для долгосрочного кредитования с применением современной рыночной инфраструктуры и финансовых инструментов

    eXeRCISeS FOR PAReTIC UPPeR LIMb AFTeR STROKe: A COMbINeD VIRTUAL-ReALITY AND TeLeMeDICINe APPROACH

    Get PDF
    Objective: Telerehabilitation enables a remotely controlled programme to be used to treat motor deficits in post-stroke patients. The effects of this telerehabilitation approach were compared with traditional motor rehabilitation methods. Design: Randomized single-blind controlled trial. Patients: A total of 36 patients with mild arm motor impairments due to ischaemic stroke in the region of the middle cerebral artery. Methods: The experimental treatment was a virtual realitybased system delivered via the Internet, which provided motor tasks to the patients from a remote rehabilitation facility. The control group underwent traditional physical therapy for the upper limb. Both treatments were of 4 weeks duration. All patients were assessed one month prior to therapy, at the commencement and termination of therapies and one month post-therapy, with the Fugl-Meyer Upper Extremity, the ABILHAND and the Ashworth scales. Results: Both rehabilitative therapies significantly improved all outcome scores after treatment, but only the Fugl-Meyer Upper Extremity scale showed differences in the comparison between groups. Conclusion: Both strategies were effective, but the experimental approach induced better outcomes in motor performance. These results may favour early discharge from hospital sustained by a telerehabilitation programme, with potential beneficial effects on the use of available resources

    Hybrid photonic-bandgap accelerating cavities

    Full text link
    In a recent investigation, we studied two-dimensional point-defected photonic bandgap cavities composed of dielectric rods arranged according to various representative periodic and aperiodic lattices, with special emphasis on possible applications to particle acceleration (along the longitudinal axis). In this paper, we present a new study aimed at highlighting the possible advantages of using hybrid structures based on the above dielectric configurations, but featuring metallic rods in the outermost regions, for the design of extremely-high quality factor, bandgap-based, accelerating resonators. In this framework, we consider diverse configurations, with different (periodic and aperiodic) lattice geometries, sizes, and dielectric/metal fractions. Moreover, we also explore possible improvements attainable via the use of superconducting plates to confine the electromagnetic field in the longitudinal direction. Results from our comparative studies, based on numerical full-wave simulations backed by experimental validations (at room and cryogenic temperatures) in the microwave region, identify the candidate parametric configurations capable of yielding the highest quality factor.Comment: 13 pages, 5 figures, 3 tables. One figure and one reference added; minor changes in the tex
    corecore