251 research outputs found

    The school counselor, sexual abuse, and R.E.T.

    Get PDF
    One in four girls and one in ten boys are sexually molested before they are eighteen years old (Cohen & Phelps, 1985; Harrison, 1985; Kempe & Kempe, 1984). The perpetrator of sexual abuse is usually someone the child knows (Adams & Fay, 1981). The father, stepfather or long-time live in boyfriend is the perpetrator in approximately one half of the cases (Cohen & Phelps, 1985; England & Thompson, 1988; Tharinger & Vevier, 1987)

    Cover crops grown in monoculture and mixed cropping affect soils differently

    Get PDF
    Cover crops provide various benefits to agricultural soils. The legumes among cover crops may provide fixed nitrogen as nutrient. Other species show high uptake and storage capacity for nitrogen, thus preventing losses as water polluting nitrate or greenhouse effective nitrous oxide. The input of carbon by shoot and root biomass, as well as rhizodeposition and root decay after harvest or mulching increases soil quality e.g. in form of nutrient supply and organic matter buildup. Brassicaceae lack mutualism with mycorrhizal fungi and some species can reduce the number of phytopathogenic nematodes, thus affecting food web structures. However, many benefits provided by single plant species may be affected when these species grow under mixed cropping. In a pot experiment ten typical cover crop species were grown in monoculture: Phacelia tanacetifolia, Brassica rapa var. rapa, Raphanus sativus var. oleiformis, Sinapis alba, Trifolium incarnatum, Vicia villosa, Avena strigosa, Lolium multiforum, Sorghum bicolor x S. sudanense, and Fagopyrum esculentum. These were compared to six mixtures ranging in complexity from two to six species including the classics R. sativus/S. alba, R. sativus/A. strigosa, and the “Landsberger Gemenge”. Six plants per pot grew in two differently textured soils (silty loam, loamy sand) in a greenhouse for 60 days. Plant parameters measured, included shoot and root dry matter, their C and N content, root morphology, plant height as well as chlorophyll content. In the soil, the pH, C-to-N-ratio, inorganic nitrogen, microbial biomass, and abundance of microbial domains were measured. Already plant parameters indicated effects caused by mixed cropping. Height and chlorophyll content of P. tanacetifolia, S. alba, and S. bicolor were higher in monocultures than in mixtures indicating interspecific competition. Furthermore, below-ground biomass of two-species-mixtures containing R. sativus appeared to be higher than those of the corresponding monocultures. While monocultures increased soil pH differently, mixtures showed no significant difference between each other. This study aims to show that the impact on soil by different cover crop species are not necessarily realised the same way under mixed cropping

    a review

    Get PDF
    It is well documented that global warming is unequivocal. Dairy production systems are considered as important sources of greenhouse gas emissions; however, little is known about the sensitivity and vulnerability of these production systems themselves to climate warming. This review brings different aspects of dairy cow production in Central Europe into focus, with a holistic approach to emphasize potential future consequences and challenges arising from climate change. With the current understanding of the effects of climate change, it is expected that yield of forage per hectare will be influenced positively, whereas quality will mainly depend on water availability and soil characteristics. Thus, the botanical composition of future grassland should include species that are able to withstand the changing conditions (e.g. lucerne and bird's foot trefoil). Changes in nutrient concentration of forage plants, elevated heat loads and altered feeding patterns of animals may influence rumen physiology. Several promising nutritional strategies are available to lower potential negative impacts of climate change on dairy cow nutrition and performance. Adjustment of feeding and drinking regimes, diet composition and additive supplementation can contribute to the maintenance of adequate dairy cow nutrition and performance. Provision of adequate shade and cooling will reduce the direct effects of heat stress. As estimated genetic parameters are promising, heat stress tolerance as a functional trait may be included into breeding programmes. Indirect effects of global warming on the health and welfare of animals seem to be more complicated and thus are less predictable. As the epidemiology of certain gastrointestinal nematodes and liver fluke is favourably influenced by increased temperature and humidity, relations between climate change and disease dynamics should be followed closely. Under current conditions, climate change associated economic impacts are estimated to be neutral if some form of adaptation is integrated. Therefore, it is essential to establish and adopt mitigation strategies covering available tools from management, nutrition, health and plant and animal breeding to cope with the future consequences of climate change on dairy farming

    Biochar reduces the efficiency of nitrification inhibitor 3,4-dimethylpyrazole phosphate (DMPP) mitigating N2O emissions

    Get PDF
    Among strategies suggested to decrease agricultural soil N2O losses, the use of nitrification inhibitors such as DMPP (3,4-dimethylpyrazole phosphate) has been proposed. However, the efficiency of DMPP might be affected by soil amendments, such as biochar, which has been shown to reduce N2O emissions. This study evaluated the synergic effect of a woody biochar applied with DMPP on soil N2O emissions. A incubation study was conducted with a silt loam soil and a biochar obtained from Pinus taeda at 500 degrees C. Two biochar rates (0 and 2% (w/w)) and three different nitrogen treatments (unfertilized, fertilized and fertilized + DMPP) were assayed under two contrasting soil water content levels (40% and 80% of water filled pore space (WFPS)) over a 163 day incubation period. Results showed that DMPP reduced N2O emissions by reducing ammonia-oxidizing bacteria (AOB) populations and promoting the last step of denitrification (measured by the ratio nosZI + nosZII/nirS + nirK genes). Biochar mitigated N2O emissions only at 40% WFPS due to a reduction in AOB population. However, when DMPP was applied to the biochar amended soil, a counteracting effect was observed, since the N2O mitigation induced by DMPP was lower than in control soil, demonstrating that this biochar diminishes the efficiency of the DMPP both at low and high soil water contents.This work was funded by the Spanish Government (AGL2015-64582-C3-2-R MINECO/FEDER), by the Basque Government (IT-932-16) and by the European Union (FACCE-CSA no 276610/MIT04-DESIGN-UPVASC, FACCE-CSA no 2814ERA01A and 2814ERA02A). This work is also supported by the USDA/NIFA Interagency Climate Change Grant Proposal number 2014-02114 [Project number 6657-12130-002-08I, Accession number 1003011] under the Multi-Partner Call on Agricultural Greenhouse Gas Research of the FACCE-Joint Program Initiative. Any opinions, findings, or recommendation expressed in this publication are those of the authors and do not necessarily reflect the view of the USDA. MLC was supported by a Ramon y Cajal contract from the Spanish Ministry of Economy and Competitiveness and thanks Fundacion Seneca for financing the project 19281/PI/14
    • …
    corecore