89 research outputs found

    Functional Lung MRI in Chronic Obstructive Pulmonary Disease: Comparison of T1 Mapping, Oxygen-Enhanced T1 Mapping and Dynamic Contrast Enhanced Perfusion

    Get PDF
    Purpose Monitoring of regional lung function in interventional COPD trials requires alternative end-points beyond global parameters such as FEV1. T1 relaxation times of the lung might allow to draw conclusions on tissue composition, blood volume and oxygen fraction. The aim of this study was to evaluate the potential value of lung Magnetic resonance imaging (MRI) with native and oxygen-enhanced T1 mapping for the assessment of COPD patients in comparison with contrast enhanced perfusion MRI. Materials and Methods 20 COPD patients (GOLD I-IV) underwent a coronal 2-dimensional inversion recovery snapshot flash sequence (8 slices/lung) at room air and during inhalation of pure oxygen, as well as dynamic contrast-enhanced first-pass perfusion imaging. Regional distribution of T1 at room air (T1), oxygen-induced T1 shortening (Delta T1) and peak enhancement were rated by 2 chest radiologists in consensus using a semi-quantitative 3-point scale in a zone-based approach. Results Abnormal T1 and Delta T1 were highly prevalent in the patient cohort. T1 and Delta T1 correlated positively with perfusion abnormalities (r = 0.81 and r = 0.80;p&0.001), and with each other (r = 0.80;p< 0.001). In GOLD stages I and II Delta T1 was normal in 16/29 lung zones with mildly abnormal perfusion (15/16 with abnormal T1). The extent of T1 (r = 0.45;p< 0.05), T1 (r = 0.52;p< 0.05) and perfusion abnormalities (r = 0.52;p< 0.05) showed a moderate correlation with GOLD stage. Conclusion Native and oxygen-enhanced T1 mapping correlated with lung perfusion deficits and severity of COPD. Under the assumption that T1 at room air correlates with the regional pulmonary blood pool and that oxygen-enhanced T1 reflects lung ventilation, both techniques in combination are principally suitable to characterize ventilation-perfusion imbalance. This appears valuable for the assessment of regional lung characteristics in COPD trials without administration of i. v. contrast

    Reproducibility and comparison of oxygen-enhanced T-1 quantification in COPD and asthma patients

    Get PDF
    T1 maps have been shown to yield useful diagnostic information on lung function in patients with chronic obstructive pulmonary disease (COPD) and asthma, both for native T1 and Delta T1, the relative reduction while breathing pure oxygen. As parameter quantification is particularly interesting for longitudinal studies, the purpose of this work was both to examine the reproducibility of lung T1 mapping and to compare T1 found in COPD and asthma patients using IRSnapShotFLASH embedded in a full MRI protocol. 12 asthma and 12 COPD patients (site 1) and further 15 COPD patients (site 2) were examined on two consecutive days. In each patient, T1 maps were acquired in 8 single breath-hold slices, breathing first room air, then pure oxygen. Maps were partitioned into 12 regions each to calculate average values. In asthma patients, the average T-1,T-RA = 1206ms (room air) was reduced to T-1,T-O2 = 1141ms under oxygen conditions (Delta T1 = 5.3%, p < 5.10(-4)), while in COPD patients both native T-1,T-RA = 1125ms was significantly shorter (p < 10(-3)) and the relative reduction to T-1,T-O2 = 1081ms on average Delta T1 = 4.2%(p < 10(-5)). On the second day, with T-1,T-RA = 1186ms in asthma and T-1,T-RA = 1097ms in COPD, observed values were slightly shorter on average in all patient groups. Delta T1 reduction was the least repeatable parameter and varied from day to day by up to 23% in individual asthma and 30% in COPD patients. While for both patient groups T1 was below the values reported for healthy subjects, the T1 and Delta T1 found in asthmatics lies between that of the COPD group and reported values for healthy subjects, suggesting a higher blood volume fraction and better ventilation. However, it could be demonstrated that lung T1 quantification is subject to notable inter-examination variability, which here can be attributed both to remaining contrast agent from the previous day and the increased dependency of lung T1 on perfusion and thus current lung state

    Pulmonary MR angiography and perfusion imaging—A review of methods and applications

    Get PDF
    The pulmonary vasculature and its role in perfusion and gas exchange is an important consideration in many conditions of the lung and heart. Currently the mainstay of imaging of the vasculature and perfusion of the lungs lies with CT and nuclear medicine perfusion scans, both of which require ionizing radiation exposure. Improvements in MRI techniques have increased the use of MRI in pulmonary vascular imaging. Here we review MRI methods for imaging the pulmonary vasculature and pulmonary perfusion, both using contrast enhanced and non-contrast enhanced methodology. In many centres pulmonary MR angiography and dynamic contrast enhanced perfusion MRI are now well established in the routine workflow of patients particularly with pulmonary hypertension and thromboembolic disease. However, these imaging modalities offer exciting new directions for future research and clinical use in other respiratory diseases where consideration of pulmonary perfusion and gas exchange can provide insight in to pathophysiology

    Simulation von Spritzgieß-Sonderverfahren

    No full text

    In-mold film decoration : advanced process technology for innovative applications

    No full text

    Flexible Oberflächengestaltung durch Dekorfolien

    No full text
    corecore