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Abstract

The role of bacterial communities in canine nasal disease has not been studied so far

using next generation sequencing methods. Sequencing of bacterial 16S rRNA genes has

revealed that the canine upper respiratory tract harbors a diverse microbial community;

however, changes in the composition of nasal bacterial communities in dogs with nasal dis-

ease have not been described so far. Aim of the study was to characterize the nasal micro-

biome of healthy dogs and compare it to that of dogs with histologically confirmed nasal

neoplasia and chronic rhinitis. Nasal swabs were collected from healthy dogs (n = 23), dogs

with malignant nasal neoplasia (n = 16), and dogs with chronic rhinitis (n = 8). Bacterial DNA

was extracted and sequencing of the bacterial 16S rRNA gene was performed. Data were

analyzed using Quantitative Insights Into Microbial Ecology (QIIME). A total of 376 Opera-

tional Taxonomic Units out of 26 bacterial phyla were detected. In healthy dogs, Moraxella

spp. was the most common species, followed by Phyllobacterium spp., Cardiobacteriaceae,

and Staphylococcus spp. While Moraxella spp. were significantly decreased in diseased

compared to healthy dogs (p = 0.005), Pasteurellaceae were significantly increased (p =

0.001). Analysis of similarities used on the unweighted UniFrac distance metric (p = 0.027)

was significantly different when nasal microbial communities of healthy dogs were com-

pared to those of dogs with nasal disease. The study showed that the canine nasal cavity is

inhabited by a highly species-rich bacterial community, and suggests significant differences

between the nasal microbiome of healthy dogs and dogs with nasal disease.

Introduction

A highly diverse community of microorganisms colonizes human and animal bodies. Since

next generation sequencing of 16S rRNA genes has been established as a method to character-

ize these communities, the understanding of interactions between bacteria and their host

has considerably improved. For several organ systems, including gastrointestinal tract [1],

skin [2], oral cavity [3], vagina [4], and recently nasal cavity [5], the microbiome of healthy

dogs has been described. It was shown that in dogs with gastrointestinal disease, including
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inflammatory bowel disease and acute diarrhea, alterations in the microbiome are associated

with the underlying pathology [6, 7].

The role of bacterial communities in the pathophysiology of canine nasal disease is still

unclear. In dogs with chronic rhinitis, bacteria have been discussed as primary or secondary

pathogens, as in some patients, at least temporarily, clinical signs improve with antibiotic treat-

ment [8]. In dogs with nasal neoplasia, bacteria are thought to be secondary pathogens, that

can colonize the nasal mucosa because of reduced mucosal defense mechanisms [9].

In human medicine, several publications have described the nasal microbiome in healthy

individuals [10, 11], and other studies investigated alterations of the bacterial population in

patients with inflammatory or neoplastic diseases of the upper airways. Chronic rhinosinusitis

in humans for example, is characterized by altered microbial composition and greater abun-

dance of Staphylococcus aureus compared to healthy individuals [12]. Different bacterial pro-

files were also detected in patients with laryngeal carcinoma compared to a healthy control

group. Fusobacterium and Prevotella species were more prevalent in the laryngeal area of these

patients than in healthy people [13].

In veterinary medicine, several studies have been published using culture or PCR to investi-

gate bacterial populations in the nasal cavity of dogs [14–16]. However, to date there are only

few reports evaluating the nasal microbiome in dogs using next generation sequencing. One

study focused on the skin microbiome, including the nostrils, in healthy and allergic dogs.

This study revealed a lower species richness and a higher abundance of the familyMoraxella-
ceae in the nostrils compared to other skin sites within a population of healthy dogs [2]. A

recent study investigated the composition of the upper and lower airway microbiota in healthy

dogs in relation to the fecal microbiota. This study illustrated rich microbial populations along

the different sites of the canine respiratory tract with increasing relative abundance of Proteo-
bacteria from the upper to the lower airways. Furthermore, analysis of the metabolic capacity

of canine airway microbiota revealed that respiratory microbes possess the genetic capacity to

utilize glyoxylate and citrate cycle metabolic pathways, which allows them to colonize nutri-

ent-poor environments as the airways [5].

So far, there are no studies comparing the nasal microbiome of healthy dogs and dogs with

nasal diseases. It is still unknown, if different microbiota possibly represent etiological agents

in canine nasal disease. More detailed knowledge about bacterial populations in the dog´s

nose might help to understand the question, if microbial changes are primarily leading to a

certain disease condition, or if microbial alterations develop secondary to reduced mucosal

defense mechanisms, caused by the underlying disease. For the future, knowledge in this field

might facilitate new treatment options, including the possibility to support beneficial bacterial

groups instead of using antibiotics to repress bacteria colonizing the canine airways. Therefore,

the aim of this study was to characterize the nasal microbiome of healthy dogs and compare it

to the microbiome of dogs with nasal neoplasia and chronic rhinitis.

Material and methods

Ethics statement

The study was approved by the ethics committee of the Centre for Clinical Veterinary Medi-

cine, Faculty of Veterinary Medicine, LMU Munich (number 25-30-04-2014).

Study population

Healthy dogs. Twenty-three healthy dogs (median age 6.0 years, median body weight 15.4

kg) were included in the study (Table 1). All dogs were privately owned and had outdoor

access. A history and physical examination were performed in each dog. For inclusion into the

Nasal microbiome of dogs

PLOS ONE | https://doi.org/10.1371/journal.pone.0176736 May 1, 2017 2 / 18

https://doi.org/10.1371/journal.pone.0176736


study, the dogs had to be without clinical and historical findings suggesting respiratory disease

for at least three months prior to sample collection. In addition, dogs were only included if

they had not been treated with antibiotic, anti-inflammatory or immunosuppressive drugs for

at least four weeks prior to sampling. They had not received any intranasal vaccination during

the last three months.

Dogs with nasal disease: Nasal neoplasia. Sixteen dogs with neoplasia of the nasal cavity

(median age 9.0 years, median body weight 21.5 kg) were included in the study (Table 2).

Malignant nasal neoplasia was diagnosed by histopathology of nasal biopsies. All dogs were cli-

ent-owned and had outdoor access. Eleven dogs had not been treated with antibiotics at least

within the last two weeks prior sample collection, five were receiving antibiotics at the time of

sampling. Treatment with anti-inflammatory drugs was no exclusion criterion.

Dogs with nasal disease: Chronic rhinitis. Eight dogs with chronic rhinitis (median age

5.0 years, median body weight 19.9 kg) were included (Table 3). Histopathology of nasal tissue

in these dogs revealed lymphoplasmacytic (n = 3) or neutrophilic (n = 5) inflammation. Only

dogs were included that had no clinical, histological, or cultural evidence of other nasal dis-

eases such as neoplasia, foreign body, or fungal infection. All dogs were client-owned and had

outdoor access. Seven of the dogs had not been treated with antibiotics at least within two

weeks prior to sample collection, one dog was receiving antibiotics at the time of sampling.

Treatment with anti-inflammatory drugs was no exclusion criterion.

Table 1. Study population: Signalement and number of dogs per household in healthy dogs.

Dog breed age sex weight (kg) Cephalic index number of dogs per household

H1 Mixed breed 1Y FS 7.5 mes 1

H2 Mixed breed 2Y FS 14.8 mes 1

H3 Beagle 10Y FS 15.4 mes 4A

H4 Australian Shepherd 2Y FS 21.0 mes 4A

H5 Weimaraner 6Y FS 22.6 mes 1

H6 Mixed breed 4Y FS 15.0 mes 1

H7 Mixed breed 11Y M 9.5 mes 1

H8 German Shepherd 8Y MN 39.0 dol 1

H9 Catahoula Leopard Dog 8Y M 32.0 mes 2B

H10 Catahoula Leopard Dog 4Y FS 28.0 mes 2B

H11 Mixed breed 6Y M 25.8 mes 1

H12 Portuguese Podengo 8Y FS 6.9 dol 4A

H13 Cocker Spaniel 7Y MN 16.5 mes 2C

H14 Mixed breed 4Y F 35.0 dol 2C

H15 Golden Retriever 7Y FS 27.0 mes 4A

H16 Mixed breed 6Y FS 6.0 mes 4D

H17 Mixed breed 1Y M 7.0 mes 4D

H18 Papillon 3Y M 5.0 mes 4D

H19 Mixed breed 8Y MN 12.0 mes 4D

H20 Mixed breed 10Mo F 18.0 mes 1

H21 Mixed breed 11Y MN 10.0 dol 2E

H22 Dachshund 3Y F 7.0 dol 2E

H23 Mixed breed 3Y FS 20.0 mes 1

Y: years, Mo: months, M: male, MN: male neutered, F: female, FS: female spayed, mes: mesocephalic, dol: dolichocephalic,
A-E: dogs living together in the same household marked by the same letter

https://doi.org/10.1371/journal.pone.0176736.t001
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Sample collection

Two nasal swabs were collected from each dog. For that purpose, a sterile dry rayon swab

(Copan1 sterile dry swab 155C, Brescia, Italy) was inserted into each nostril and rotated care-

fully. In the population of healthy dogs, sample collection was performed while the dogs were

awake. In the diseased dogs, samples were collected while patients were under general anesthe-

sia before the rhinoscopy procedure was started. All swabs were frozen at -80˚C until further

analysis.

DNA extraction

Extraction of the genomic DNA was performed from pooled sets of swabs collected from each

dog using a QIAamp1 DNA Mini Kit (Qiagen, Hilden, Germany) as recommended by the

manufacturer and described previously [17].

Table 2. Study population: Signalement, underlying disease and medication of dogs with nasal neoplasia.

dog breed age sex weight (kg) histopathology antibiotics anti-inflammatory drugs

N1 Golden Retriever 12Y MN 37.9 esthesioneuroblastoma no no

N2 Mixed breed 11Y M 19.5 carcinoma no no

N3 Husky 2Y M 19.4 esthesioneuroblastoma no no

N4 Saint Bernard 8Y M 61.0 squamous cell carcinoma no no

N5 Mixed breed 8Y FS 23.0 carcinoma no prednisolone

N6 Mixed breed 11Y FS 6.9 carcinoma no no

N7 Labrador Retriever 12Y M 35.3 squamous cell carcinoma no no

N8 Labrador Retriever 6Y FS 32.0 lymphoma no prednisolone

N9 Mixed breed 11Y F 30.0 osteosarcoma no no

N10 Coton de Tulear 14Y M 8.8 carcinoma no meloxicam

N11 Chihuahua 9Y M 2.5 carcinoma no no

N12 Mixed breed 9Y FS 32.5 carcinoma amoxi/clav prednisolone

N13 Mixed breed 3Y FS 20.0 osteosarcoma amoxi/clav no

N14 Mixed breed 13Y F 13.0 osteosarcoma amoxi/clav prednisolone, metamizole

N15 Mixed breed 7Y MN 37.4 transitional cell carcinoma enrofloxacin prednisolone, meloxicam

N16 Welsh Corgi 9Y M 15.0 carcinoma clindamycin meloxicam

Y: years, Mo: months, M: male, MN: male neutered, F: female, FS: female spayed

https://doi.org/10.1371/journal.pone.0176736.t002

Table 3. Study population: Signalement, underlying disease and medication of dogs with chronic rhinitis.

dog breed age sex weight (kg) histopathology antibiotics anti-inflammatory drugs

CR1 Old English Sheepdog 3Y M 43.9 purulent no no

CR2 Mixed breed 13Y FS 7.2 purulent no no

CR3 Mixed breed 6Y F 12.1 ulcerous, necrotizing,

granulomatous

no no

CR4 West Highland White

Terrier

2Y FS 6.6 purulent no no

CR5 Prager Rattler 5Mo F 2.3 purulent no no

CR6 Rhodesian Ridgeback 4Y MN 44.0 purulent no no

CR7 Golden Retriever 8Y M 29.5 lymphoplasmacytic, granulomatous no no

CR8 Golden Retriever 8Y F 27.7 lymphoplasmacytic, eosinophilic clindamycin,

doxycycline

no

Y: years, Mo: months, M: male, MN: male neutered, F: female, FS: female spayed

https://doi.org/10.1371/journal.pone.0176736.t003
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Briefly, for lysis of bacteria, swabs were placed in 2 ml phosphate-buffered saline (PBS) con-

taining 0.1% NaN3, and were incubated at room temperature for three hours. Swabs were

removed and the buffer solution was centrifuged at 7500 rpm for ten minutes (using an Eppen-

dorf Centrifuge 5417R, Hamburg, Germany). After removal of the supernatant and resuspen-

sion in 180 μl ATL buffer, the pellet was transferred into a tube with 20 μl proteinase K and

incubated at 56˚C and 700rpm for one hour (using an Eppendorf Thermomixer Comfort,

Hamburg, Germany). Then, 200 μl AL buffer were added and samples were incubated at 70˚C

for ten minutes. After adding 200 μl of ethanol, samples were transferred into QIAmp Mini

spin columns to bind the bacterial DNA. DNA from the two swabs per animal was pooled dur-

ing this step of the extraction procedure. Afterwards, DNA was washed in two steps following

the manufacturer´s instructions. To elute the DNA, 100 μl AE buffer were added on the filter

inside the microcentrifuge tube, which then were incubated at room temperature for five min-

utes and centrifuged at 8000 rpm for one minute. Extracted DNA was frozen at -80˚C until

further analysis.

Sequencing

Sequencing of the 16S rRNA gene V4 variable region was performed at MR DNA (www.

mrdnalab.com, Shallowater, TX, USA) on an Illumina MiSeq platform following the manufac-

turer’s guidelines, using forward and reverse primers: 515F (5´-GTGCCAGCMGCCGCGGTAA-
3´) and 806R (5´-GGACTACVSGGGTATCTAAT-3´), as described previously [18].

After sequencing, primers and barcodes were removed from the sequences, short, ambigu-

ous, homopolymeric and chimeric sequences were depleted from the dataset using the QIIME

(Quantitative Insights Into Microbial Ecology) v1.8 pipeline [19]. Operational Taxonomic

Units (OTUs) were assigned based on at least 97% sequence identity using QIIME. The

sequences have been deposited in the NCBI Sequence Read Archive under the accession num-

ber SRP092120.

Data analysis

A total of 4,088,256 sequences was amplified throughout all the samples from healthy and

diseased dogs. Minimum were 43,193 sequences in one sample, maximum were 135,315

sequences, with a mean of 83,433 sequences (median 83,526). To account for unequal sequenc-

ing depth, subsequent analysis was performed on a subset of 43,193 sequences per sample,

which is the lowest depth within the samples.

The compiled data were used to determine the relative percentages of bacteria for each indi-

vidual sample. Alpha and beta diversity measures were calculated and Principle Coordinates

Analysis (PCoA) plots and rarefaction curves were generated using the software QIIME v1.8

(Knight and Caporaso Labs, Arizona, USA).

Alpha diversity, a measurement for the diversity of an individual sample, can be described

by the number of observed species, the Shannon diversity index, which takes into account

abundance and evenness of species [2], and the Chao1 index, which calculates the estimated

true species diversity of a sample [20]. To evaluate the beta diversity, a measurement for

differences in microbial compositions between different samples, both the weighted UniFrac

analysis, which accounts for relative abundance of sequences in different environments, and

unweighted, which does not account for relative abundance, were performed.

PCoA plots were investigated for clustering by visual assessment. Factors that were taken

into consideration were individual (sex, breed, age, body weight and cephalic index, classified

in mesocephalic or dolichocephalic, based on breed or phenotypically suspected breed) and

environmental (number of dogs per household) characteristics in the healthy dogs (Table 1),

Nasal microbiome of dogs
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and individual factors (sex, breed, age, body weight, pretreatment with antibiotics, predniso-

lone, NSAIDs, histopathological diagnosis) in the diseased dogs (Tables 2 and 3). Differences

in bacterial communities between healthy dogs and dogs with nasal disease were analyzed

using the phylogeny-based unweighted UniFrac distance metric. This analysis measures the

phylogenetic distance among bacterial communities in a phylogenetic tree, and thereby pro-

vides a measure of similarity among microbial communities present in different biological

samples [21]. ANOSIM (Analysis of Similarity) within the software package PRIMER 6 (PRI-

MER-E Ltd., Luton, UK) was used on the unweighted UniFrac distance matrix to determine

significant differences in microbial communities between the different groups. P values <0.05

were considered statistically significant. To elucidate whether dogs, which were living together

in the same household, had closer similarities within their microbial communities, average

distances between individual animals were calculated using the unweighted UniFrac file using

the method ANOSIM with 999 permutations. Thus, the distances between individuals living

together were compared to those of dogs living separately.

Statistical analysis of individual factors (age, body weight) and alpha diversity indices were

performed using the software package PRISM (PRISM 6, GraphPad Software Inc., San Diego,

USA). To avoid influence of confounding factors, dogs with antibiotic pretreatment were

excluded from statistical analysis for investigations other than the comparison of pretreated

and untreated patients. As in other species, like pigs, an influence of age on the nasal micro-

biota has been shown [22], dogs under 12 months of age were also excluded from statistical

analysis except age-related statistics.

Because the data were assumed to be not normally distributed, a non-parametric Mann-

Whitney test was used for statistical comparison between healthy and diseased dogs. A non-

parametric Kruskal-Wallis test followed by Dunn‘s Multiple Comparison post-test was per-

formed to compare individual factors and alpha indices for the three groups healthy, nasal

neoplasia, and chronic rhinitis. To determine which disease types were significantly different

with regard to these factors, an additional pairwise test using PRIMER 6 was used. P values

<0.05 were considered statistically significant.

Linear discriminant analysis effect size (LEfSe) was used to elucidate bacterial taxa (16S

rRNA genes) associated with healthy or diseased dogs. LEfSe was used online in the Galaxy

workflow framework (https://huttenhower.sph.harvard.edu/galaxy/).

Differences in the proportions of bacterial taxa between healthy and diseased dogs were

investigated using a non-parametric Kruskal-Wallis test, using the statistical package JMP Pro

11 (SAS, Marlow, Buckinghamshire). Resulting p-values were corrected for multiple compari-

sons using the Benjamini & Hochberg False Discovery Rate [23]. A Dunn’s Multiple Compari-

sons post-test was used to determine which disease types were significantly different.

Results

Animal population

A significant difference (p = 0.015) was observed concerning age between healthy dogs

(5.4 ± 3.2 years) and those with nasal neoplasia (9.1 ± 3.4 years), but not between healthy dogs

and dogs with chronic rhinitis (5.6 ± 4.1 years). No significant difference in body weight was

identified between healthy dogs (17.5 ± 9.9 kg) and dogs with nasal tumors (24.6 ± 14.8 kg) or

chronic rhinitis (21.7 ± 16.9 kg).

Nasal microbiome of healthy dogs

Nasal microbial composition. Investigating PCoA plots, no clustering, based on similari-

ties of bacterial molecular phylogenetic trees, was observed when comparing sex, age group

Nasal microbiome of dogs
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(< 1 year, 1–3 years, 4–8 years, 9–12 years, > 12 years), body weight group (< 10 kg, 10–20

kg,> 20 kg) or cephalic index between groups. This was confirmed with statistical testing

using ANOSIM on the unweighted UniFrac distance metric, which showed no significant dif-

ferences for these comparisons (sex: p = 0.151, R = 0.012, age group: p = 0.320, R = 0.035, body

weight group: p = 0.05, R = 0.121, cephalic index: p = 0.739, R = -0.091).

Calculation of average distances using the unweighted UniFrac distance metric showed no

closer similarity of microbial communities between dogs living together in one household

when compared to dogs living separately.

Species richness and diversity. A rarefaction analysis was performed to evaluate species

richness. For different age groups and different weight groups significant differences between

single groups could be demonstrated (Fig 1). Dogs older than 9 years (age group 4) had a sig-

nificantly higher Shannon diversity index than younger dogs (age group 3, 4–8 years old)

(ANOVA with following Tukey test, p = 0.036). Differences in number of observed species

and Chao1 were not significant. Considering different weight groups, dogs with a body weight

of less than 10 kg had a significantly higher Shannon diversity index (p = 0.017) and number

of observed species (p = 0.041) than dogs with a body weight over 10 kg. Chao1 did not differ

significantly. Other factors like breed or time of the year, when the animal was sampled, were

too variable to be evaluated statistically.

Good´s coverage was higher than 0.97 in all samples at the chosen sequencing depth of

43,190 sequences. This allows to conclude that all the samples have a sufficiently high number

of sequences and enough coverage, and all animals were equally sampled.

Fig 1. Rarefaction analysis of 16S-rRNA gene sequences obtained from healthy dogs, comparing

different age and body weight groups. Lines represent the mean and error bars represent standard

deviations. Shannon diversity index and number of observed species are higher in dogs older than 9 years

and in dogs with a body weight of less than 10kg.

https://doi.org/10.1371/journal.pone.0176736.g001
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Most common taxa colonizing the nasal cavity of healthy dogs. A total of 26 bacterial

phyla was detected in the samples from the nasal cavity of healthy dogs. Most abundant phy-

lum was Proteobacteria (mean 83.4%, min 37.4%—max 98.5%), followed by Firmicutes (4.8%,

0.4–20.8%), Bacteroidetes (2.6%, 0.1–12.5%), Cyanobacteria (2.1%, 0.0–11.6%), and Actinobac-
teria (2.1%, 0.1–8.6%) (Table 4). Other phyla, like Verrucomicrobia, Tenericutes, Planctomy-
cetes and GN02 were detected in smaller amounts and only in a few animals.

At class level, Gammaproteobacteria were most commonly detected, followed by Alphapro-
teobacteria, Betaproteobacteria, and Bacilli. Most frequently detected family wasMoraxellaceae
(phylum Proteobacteria, class Gammaproteobacteria, order Pseudomonadales) (Fig 2).Morax-
ella was the genus which was identified predominantly in most of the samples of healthy dogs.

This genus was detected in all samples, and represented 59.2% of the total taxa in healthy dogs,

with a range of 1.5% to 95.6%. Other frequently identified genera were Phyllobacterium (3.4%,

0.1–12.8%), not specified genera of the family Cardiobacteriaceae (2.1%, 0.0–69.1%), and

Staphylococcus (1.7%, 0.0–15.3%); however, these genera were predominantly represented only

in few individuals.

Throughout all samples, 376 different OTUs were detected, but DNA of most of the highly

abundant taxa could not be resolved beyond genus level.

Nasal microbiome of healthy dogs compared to diseased dogs

Nasal microbial communities in healthy versus diseased dogs. Clustering in the PCoA

plots between microbial communities of healthy and diseased dogs was observed. While

healthy dogs formed a cluster, and dogs with nasal neoplasia formed another cluster, microbial

communities in dogs with chronic rhinitis were more scattered (Fig 3). In ANOSIM analysis a

significant difference could be verified when comparing healthy and diseased dogs (p = 0.027,

R = 0.101). Pairwise test using PRIMER6 suggested that healthy dogs and dogs with nasal neo-

plasia differed significantly (p = 0.033) in microbial community composition. Between healthy

dogs versus dogs with chronic rhinitis (p = 0.590) and dogs with chronic rhinitis versus dogs

with nasal neoplasia (p = 0.390) no significant difference was verified.

Most of the individual factors (sex, breed, age, body weight, pretreatment with antibiotics,

prednisolone, NSAIDs, histopathological diagnosis) were highly variable. Due to the resulting

small sample size, statistical comparison of male and female dogs, different age groups, differ-

ent groups of body weight, and patients with different histological diagnoses within the group

of either neoplasia or chronic rhinitis, was not performed. There was no clustering observed,

assessing the PCoA plots of microbial communities, with exception of antibiotic treatment

within the group of dogs with nasal neoplasia.

Within the group of dogs with nasal neoplasia, bacterial communities of patients with and

without antibiotic treatment were compared statistically. The microbial communities of pre-

treated dogs were marginally distributed compared to untreated dogs (Fig 4A), but this was

not significant based on ANOSIM of unweighted UniFrac distance metrics (p = 0.149,

R = 0.136). Although there was no significant difference demonstrated for ß-diversity, several

significantly different bacterial taxa could be detected using LEfSe (Fig 4B). While the genera

Planctomyces and Sphingobium and the family Parachlamydiaceae were significantly more rep-

resented in dogs that had received antibiotics within the last two weeks, the family Gemellaceae
was associated with dogs without antibiotic treatment.

Species richness and diversity. Diversity analysis was performed to compare the number

of observed species, Shannon diversity index, Chao1 between healthy and diseased dogs. Sta-

tistical analysis of these parameters showed no significant differences between the groups for

number of observed species and Chao1. Shannon diversity index was lower for the healthy

Nasal microbiome of dogs
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Table 4. Taxa present at >1% mean relative abundance in healthy and diseased dogs. Mean relative percentages and standard deviation of the most

abundant bacterial groups, annotated to the level of phylum, family and Operational Taxonomic Unit (OTU), based on sequencing of the 16S rRNA.

Taxon healthy neoplasia rhinitis

phylum

family

OTU

mean*% SD % mean % SD % mean % SD % Kruskal Wallis p-value q-value**

Proteobacteria 82.8 14.8 72.4 29.3 64.3 20.4 0.133 0.448

Moraxellaceae 60.5a 30.4 22.8b 29.0 40.9ab 32.7 0.006 0.323

Moraxella spp. 58.0 a 30.2 14.9 b 21.5 33.8 ab 31.5 0.001 0.188

Phyllobacteriaceae 3.5 14.7 0.1 0.0 0.1 0.1 0.239 0.690

Phyllobacterium spp. 3.5 14.7 0.1 0.0 0.1 0.0 0.573 0.813

Neisseriaceae 2.7 5.8 15.5 18.4 3.1 3.3 0.077 0.545

Conchiformibius spp. 0.9 1.5 9.5 15.9 1.8 2.2 0.429 0.740

Cardiobacteriaceae 2.3 3.6 0.4 0.6 1.2 2.5 0.039 0.457

Polyangiaceae 1.4 6.6 0.0 0.0 0.0 0.0 0.051 0.457

Comamonadaceae 1.3 2.6 1.4 2.0 0.9 1.0 0.927 0.991

Pasteurellaceae 0.7 a 0.8 15.6 b 20.1 3.4 ab 4.1 0.019 0.457

Pasteurella multocida 0.1 a 0.1 2.5 b 6.5 0.0 ab 0.0 0.004 0.209

Xanthomonadaceae 0.2 0.2 3.3 6.9 0.4 0.3 0.206 0.669

Pseudomonadaceae 0.4 0.8 2.0 3.5 1.1 1.5 0.339 0.723

Alcaligenaceae 0.5 0.7 1.0 1.4 1.4 1.7 0.601 0.833

Enterobacteriacae 0.2 0.3 1.0 2.5 0.4 0.4 0.392 0.747

Sphingomonadaceae 0.8 0.7 0.3 0.5 2.4 4.5 0.119 0.597

Oxalobacteraceae 0.3 0.5 0.5 0.9 1.6 2.9 0.661 0.881

Acetobacteraceae 0.1 a 0.2 0.0 b 0.0 1.1 ab 2.1 0.041 0.457

Firmicutes 4.9 6.2 7.2 8.7 4.7 3.4 0.359 0.554

Staphylococcaceae 1.8 4.4 1.8 2.9 1.6 1.7 0.816 0.963

[order] Clostridiales 0.1 0.1 1.5 4.8 0.0 0.0 0.145 0.600

Bacteroidetes 2.8 3.3 5.5 7.2 11.6 11.4 0.127 0.448

[Weeksellaceae] 0.6 1.0 1.6 1.7 4.8 10.9 0.246 0.690

Porphyromonadaceae 0.2 0.6 1.1 3.6 0.4 0.5 0.296 0.723

Chitinophagaceae 0.9 1.6 1.1 1.4 4.0 6.7 0.540 0.826

Cytophagaceae 0.7 0.9 0.3 0.4 2.2 2.2 0.222 0.672

Cyanobacteria 2.1 3.4 0.6 1.0 7.1 7.7 0.315 0.531

[order] Streptophyta 1.7 3.3 0.5 1.0 6.4 7.2 0.303 0.723

Actinobacteria 2.1 2.1 6.0 10.8 3.8 3.8 0.750 0.843

Microbacteriaceae 0.5 0.6 1.3 3.7 0.3 0.3 0.192 0.669

Leucobacter spp. 0.3 0.4 1.2 3.7 0.1 0.1 0.097 0.602

Micrococcaceae 0.3 0.6 3.8 10.3 0.4 0.6 0.262 0.716

GN02 1.9 3.0 1.3 1.6 0.7 1.1 0.253 0.531

[class] BD1-5 1.9 3.0 1.3 1.6 0.7 1.1 0.204 0.669

Spirochaetes 0.0 0.0 1.5 4.7 0.0 0.0 0.130 0.448

Spirochaetaceae 0.0 0.0 1.3 4.4 0.0 0.0 0.052 0.457

Treponema spp. 0.0 0.0 1.3 4.4 0.0 0.0 0.052 0.598

Tenericutes 0.1 0.2 2.0 5.5 0.9 1.6 0.395 0.554

Mycoplasmataceae 0.1 0.2 1.9 5.5 0.9 1.6 0.840 0.964

Mycoplasma spp. 0.1 0.2 1.9 5.5 0.9 1.6 0.856 0.915

*a, b: Means not sharing a common superscript differ significantly (p < 0.05, Dunn’s multiple comparison test).

** q-values adjusted based on the Benjamini & Hochberg False discovery rate

https://doi.org/10.1371/journal.pone.0176736.t004
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dogs than for the diseased dogs (Kruskal-Wallis test, p = 0.038), but the difference was not sta-

tistically significant when comparing the three groups, healthy dogs versus nasal neoplasia ver-

sus chronic rhinitis, in the following Dunn´s multiple comparison test (Fig 5).

Most common taxa colonizing the nasal cavity of healthy compared to diseased dogs.

In dogs with nasal neoplasia,Moraxella spp. was the most abundant finding on genus level, as

it was in healthy dogs, but accounted for only 15.3% of the total taxa (min. 0.7%–max. 61.1%).

This difference was statistically significant (p = 0.001). The proportions of the family Pasteurel-
laceae (phylum Proteobacteria, class Gammaproteobacteria, order Pasteurellales) were different

between healthy and diseased dogs. This bacterial family accounted for 12.9% (0.1–64.3%)

of the total taxa and was significantly higher represented in dogs with neoplasia (p = 0.019)

(Figs 2 and 6).Haemophilus parainfluenza (p = 0.018) and Pasteurella multocida (p = 0.004)

were representatives of this family that were significantly more common in dogs with nasal

neoplasia than in healthy dogs. Other common genera in dogs with nasal neoplasia included

Conchiformibius spp. (9.5%, 0.1–49.9%, p = 0.429) (phylum Proteobacteria, family Neisseria-
ceae) and non-specified genera of the families Neisseriaceae (5.9%, 0.1–54.5%, p = 0.080) and

Fig 2. Bacterial families in healthy and diseased dogs. Mean values of most common bacterial families in

the nasal cavity of healthy dogs, dogs with nasal neoplasia and chronic rhinitis.

https://doi.org/10.1371/journal.pone.0176736.g002
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Micrococcaceae (3.2%, 0.1–34.8%, p = 0.480); however, these were not more commonly

detected than in healthy dogs.

Analysis of individual bacterial groups based on LDA effect size (LEfSe) observed alter-

ations in several taxa when dogs with nasal neoplasia were compared to healthy dogs (Fig 7).

Dogs with nasal tumors showed significantly decreased relative abundance ofMoraxella spp.

Fig 3. Principal coordinate analysis (PCoA) of unweighted UniFrac distances of 16S rRNA genes (3D).

Similarities in microbial communities in healthy dogs, dogs with nasal neoplasia and chronic rhinitis.

Clustering is observed between healthy dogs and dogs with nasal neoplasia, but not in dogs with chronic

rhinitis.

https://doi.org/10.1371/journal.pone.0176736.g003

Fig 4. Differences in microbial communities in dogs with nasal neoplasia depending on antibiotic

treatment. PCoA plots of microbial communities in dogs with nasal neoplasia without and under antibiotic

treatment (A), bacterial taxa significantly higher represented in dogs with (green) and without (red) antibiotic

treatment showed by linear discriminant analysis (LDA) scores based on LEfSe (B).

https://doi.org/10.1371/journal.pone.0176736.g004
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(p = 0.001) and Cardiobacteriaceae (p = 0.039), while Pasteurella spp. (p = 0.004) was signifi-

cantly increased.

The nasal cavity of dogs with chronic lymphoplasmacytic or neutrophilic rhinitis was also

predominantly colonized byMoraxella spp. (34.5%, 0.7–77.3%), followed by the order Strepto-
phyta (6.4%, 0.0–16.6%), the genus Riemerella spp. (4.4%, 0.0–25.3%), and the family Pasteurel-
laceae (2.9%, 0.2–17.1%) (Figs 2 and 6).

When individual bacterial groups were analyzed by LEfSe, a significant difference between

healthy dogs and dogs with chronic rhinitis could be observed for several taxa, including Kais-
tobacter spp. (0.3%, 0.0–1.1%, p = 0.036) and Pirellulaceae (0.2%, 0.0–0.9%, p = 0.049) (Fig 7).

However, these accounted for only a small percentage of the total taxa (<0.3%) and only for

single animals.Mycoplasma spp. were considerably more abundant in several individual dogs

with chronic rhinitis, especially in the sample of one young dog with chronic rhinitis (61.8%)

Fig 5. Rarefaction curve and statistical evaluation of Shannon diversity index. Shannon diversity index

is lower in healthy dogs (blue) than in dogs with chronic rhinitis (red) or nasal neoplasia (orange) (dogs with

antibiotic pre-treatment excluded) (A). The difference is not significant in a Dunn´s multiple comparison test

(B).

https://doi.org/10.1371/journal.pone.0176736.g005

Fig 6. Composition of the nasal microbiome in healthy and diseased dogs. Bar charts showing relative

abundance of all taxa detected in nasal swabs of dogs, annotated to the taxonomic level of phylum (A) and

family (B).

https://doi.org/10.1371/journal.pone.0176736.g006
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(Fig 8), but since dogs under 12 months of age were excluded from other than age-related sta-

tistical analysis, this dog was not included in the comparison.

All taxa that differ between groups, are listed in the supporting information (S1 Table).

Discussion

The study demonstrates that the canine nasal cavity is inhabited by a species-rich bacterial

community. In agreement with previous investigations, which used next-generation sequenc-

ing methods for bacterial analysis, the nasal microbiome of healthy dogs was shown to be

dominated byMoraxellaceae, especiallyMoraxella spp., followed by several other bacterial

families at considerably lower levels [2, 5]. Possible reasons for a different order of the detected

taxa, if sorted based on abundance, could be the selection of study subjects. While in one of the

previous studies [5] samples from a uniform cohort of research animals were used, the present

Fig 7. Different relative abundance of bacterial taxa between healthy and diseased dogs. Bacterial taxa

at different taxonomic levels (c = class, o = order, f = family, g = genus) with significantly different mean

relative abundance in dogs with chronic rhinitis (blue), nasal neoplasia (green) and healthy dogs (red), ranked

according to their effect size determined by LDA score, based on LEfSe.

https://doi.org/10.1371/journal.pone.0176736.g007
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study included a heterogeneous group of pet dogs for analysis. The different genetic and envi-

ronmental background of these populations could be a confounding factor.

Several bacterial taxa isolated in this study have been described for the first time since next-

generation sequencing methods complement culture-based methods. These bacteria have

never been associated with the dog´s nasal cavity before. Many of these bacteria cannot be cul-

tured so far, because they are highly adapted to their particular microenvironment, which is

difficult to reproduce under laboratory conditions [24]. Some have been known as being part

of the canine microbiome, such as Porphyromonas, GN02, or Conchiformibius in the oral cavity

[25, 26]. Other taxa have been detected in soil or water samples before [27, 28]; thus, it is likely

that these bacteria were obtained from the environment, as the nares are very exposed to a dog

´s outdoor environment.

In previous studies, in which culture-based methods were used, a much lower number of

bacterial taxa were identified in the canine nose compared to recent investigations using pyro-

sequencing methods. In healthy dogs, Staphylococci, Streptococci, Acinetobacter, and Entero-
cocci were hypothesized to be the main components of the nasal microbiota [14, 29, 30].

Predominant taxa detected using next generation sequencing, such asMoraxella spp., did not

occur in the results obtained by culturing methods.

In human medicine, there are several studies investigating the nasal microbiome of healthy

as well as diseased individuals based on 16S rRNA sequencing. Different microbiomes for dif-

ferent sites in the upper airways have been described [10, 31]. In humans, Actinobacteria and

Firmicutes accounted for the majority of nasal bacteria, with a lower prevalence of Proteobac-
teria. Therefore, there seem to be considerable differences between the nasal bacterial commu-

nities of different species.

In veterinary medicine, only few reports exist about microbial colonization of the upper air-

ways in dogs with nasal disease. The present study is the first one to investigate nasal micro-

biota in dogs with nasal disease using next-generation sequencing methods. Bacteria of the

upper respiratory tract of dogs with respiratory signs have been examined using cultural meth-

ods before [32]. Most frequently isolated bacteria were Staphylococcus intermedius, E. coli, α-

hemolyzing Streptococcus, and Pasteurella multocida, which were all not considered primary

pathogens, but probably originating from the normal bacterial community. With exception of

Fig 8. Individual family-level composition of the nasal microbiome in healthy and diseased dogs. Bar

charts showing relative abundance of all taxa (annotated to the taxonomic level of family) detected in nasal

swabs of dogs. Each bar chart represents one dog.

https://doi.org/10.1371/journal.pone.0176736.g008
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E. coli, these bacteria could also be found in the present study population, but accounted only

for a minor proportion of the microbiota in healthy and diseased animals. While different spe-

cies of Staphylococcus and Pasteurella were detected at low levels in most of the animals, Strep-
tococcus occurred only in a small number of dogs.

In another study, bacterial cultures of dogs with nasal neoplasia and lymphoplasmacytic

rhinitis were examined. An equal distribution between negative culture results and bacteria

that were considered normal flora was detected in both groups; however, the definition of

“normal microflora” was based on data obtained from the literature [33].

Nasal biopsies from dogs with lymphoplasmacytic rhinitis (LPR), nasal neoplasia, and

aspergillosis have been examined for bacterial and fungal DNA using polymerase chain reac-

tion in a previous work [16]. No difference in DNA load for bacterial DNA could be demon-

strated between disease groups. Furthermore, no bacterial taxa which have been associated

with upper respiratory tract disease in several species, like Bartonella,Mycoplasma, or Chla-
mydia [34–36], could be detected in any biopsy. However; in the present study facultative path-

ogens such asMycoplasma spp. were also only detected in very small numbers.

The present study was able to demonstrate alterations of the nasal microbiome of dogs with

nasal neoplasia as well as chronic rhinitis compared to healthy dogs. Most noticeable findings

were the decreased abundance ofMoraxellaceae and higher abundance of Pasteurellaceae in

diseased dogs. Also, the family Neisseriaceae was apparently more common in some of the

individuals affected by nasal neoplasia (Fig 7), although this difference was not statistically sig-

nificant for all the dogs. So far it is not possible to elucidate, whether these alterations play a

role in the etiology of the disease process or rather represent consequences of a primary dis-

ease. One conceivable mechanism could be bacterial overgrowth with certain taxa, enabled by

immune modulation caused by the underlying disease. However; some of the bacteria found

in the present study are known to be capable to subvert their host´s immune system. In toxi-

genic strains of Pasteurella multocida the protein toxin PMT is found, which acts as a strong

mitogen, protects from apoptosis and has an impact on the differentiation and function of

immune cells [37]. This could be one possible mechanism to support progression of the

disease.

In human medicine, several studies demonstrated a difference in nasal bacterial communi-

ties when comparing healthy humans to patients with chronic rhinosinusitis (CRS). CRS

patients were characterized by altered microbial composition and greater abundance of S.
aureus [12]. A quantitative increase in most bacterial and fungal species was reported in

patients with CRS relative to controls, but qualitatively similar microbiomes [24]. This study

also performed a more detailed characterization of the immune response. Flow cytometry was

performed to measure contents of immune cells in lavage of the middle meatus in CRS and

control patients, and cytokines and chemokines were measured by multiplexed ELISA. Results

of this investigations demonstrated significantly elevated TH2-related cytokines and increased

interleukin (IL) 8 in patients with CRS. Immune response of peripheral blood leukocytes of

CRS patients cocultured with lavage of healthy individuals was analyzed measuring the IL-5

secretion (i.e. TH2 response) by ELISpot assay. Data supported the theory that in some cases,

CRS results from an immune hyperresponsiveness to the commensal microbiome. No similar

investigations have been performed in dogs with chronic rhinitis so far, but it would be inter-

esting to investigate the immune response of dogs with chronic rhinitis.

For the development of neoplastic diseases, an involvement of microbiome alterations and

dysbiosis has been discussed in different human studies as well [13, 38]. One study reported

that the bacterial profiles of the larynx of laryngeal cancer patients were significantly different

from those of healthy control subjects. It suggested a potential role of several microorganisms

in the pathogenesis of laryngeal carcinoma, for example Fusobacterium spp. as
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proinflammatory pathogens [13]. To what extent the altered bacterial taxa, like increased inci-

dence of Pasteurellaceae, found in the dogs with nasal neoplasia in the present study could be

involved in cancerogenesis, remains a topic for further research.

An interesting finding was that the nasal microbial composition of dogs with nasal tumors

was not significantly altered if dogs had been pretreated with antibiotics. In a study investigat-

ing the gastrointestinal microbiota in dogs before and under antibiotic treatment, considerable

and prolonged effects on bacterial composition could be demonstrated [39]. However, due to

the relatively small number of diseased patients in the present study and the heterogeneous

treatment protocols with different antimicrobial and partially anti-inflammatory drugs, valid-

ity of this finding is limited. Nevertheless, only a few taxa were altered significantly between

pretreated and untreated patients, and the diversity and number of observed species was simi-

lar. Possible reasons could be insufficient accumulation of antibacterial drugs in the nasal

mucosa, bacterial resistance to antibiotics, or detection of DNA from nonviable bacteria.

Limitations of the present study are the relatively small number of animals per group, and a

heterogeneous pretreatment within the population of diseased animals. Furthermore, different

settings of sample collection between healthy dogs being awake and diseased dogs being under

anesthesia could be a confounding factor leading to different results.

Conclusion

Using next-generation sequencing methods, a highly species-rich bacterial community was

shown to inhabit the canine nasal cavity. The majority of bacteria detected in this study had

never or only rarely been isolated before with conventional culture techniques. Significant dif-

ferences in the composition of microbiota colonizing the nose of healthy dogs compared to

dogs with nasal neoplasia or chronic rhinitis suggest a complex role of the nasal microbiome

in the disease process. Further studies are warranted to elucidate the complex interactions

between nasal microbiome, host immune response, and canine nasal disease.
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