111 research outputs found

    Efficient light coupling from integrated single-mode waveguides to supercollimating photonic crystals on silicon-on-insulator platforms

    Full text link
    We propose a practical and efficient solution for the coupling of light from integrated single-mode waveguides to supercollimating planar photonic crystals on conventional silicon-on-insulator platforms. The device consists of a rib waveguide, designed to sustain spatially extended single-modes and matched to a supercollimating photonic crystal, which has been truncated at its boundary to improve impedance matching between the two photonic components. Three-dimensional simulations show transmission efficiencies up to 96 % and reflections below 0.2 % at wavelengths close to 1.55 microns. This approach constitutes a significant step toward the integration of supercollimating structures on photonic chips.Comment: 11 pages, 4 figure

    Light Transport and localization in two-dimensional correlated disorder

    Get PDF
    Structural correlations in disordered media are known to affect significantly the propagation of waves. In this Letter, we theoretically investigate the transport and localization of light in 2D photonic structures with short-range correlated disorder. The problem is tackled semianalytically using the Baus-Colot model for the structure factor of correlated media and a modified independent scattering approximation. We find that short-range correlations make it possible to easily tune the transport mean free path by more than a factor of 2 and the related localization length over several orders of magnitude. This trend is confirmed by numerical finite-difference time-domain calculations. This study therefore shows that disorder engineering can offer fine control over light transport and localization in planar geometries, which may open new opportunities in both fundamental and applied photonics research

    First-principles calculation of the temperature dependence of the optical response of bulk GaAs

    Full text link
    A novel approach has been developed to calculate the temperature dependence of the optical response of a semiconductor. The dielectric function is averaged over several thermally perturbed configurations that are extracted from molecular dynamic simulations. The calculated temperature dependence of the imaginary part of the dielectric function of GaAs is presented in the range from 0 to 700 K. This approach that explicitly takes into account lattice vibrations describes well the observed thermally-induced energy shifts and broadening of the dielectric function.Comment: 6 pages, 3 figure

    Efficient light coupling into a photonic crystal waveguide with flatband slow mode

    Full text link
    We design an efficient coupler to transmit light from a strip waveguide into the flatband slow mode of a photonic crystal waveguide with ring-shaped holes. The coupler is a section of a photonic crystal waveguide with a higher group velocity, obtained by different ring dimensions. We demonstrate coupling efficiency in excess of 95% over the 8 nm wavelength range where the photonic crystal waveguide exhibits a quasi constant group velocity vg = c/37. An analysis based on the small Fabry-P\'erot resonances in the simulated transmission spectra is introduced and used for studying the effect of the coupler length and for evaluating the coupling efficiency in different parts of the coupler. The mode conversion efficiency within the coupler is more than 99.7% over the wavelength range of interest. The parasitic reflectance in the coupler, which depends on the propagation constant mismatch between the slow mode and the coupler mode, is lower than 0.6% within this wavelength range.Comment: 11 pages, 7 figures, submitted to Photonics and Nanostructures - Fundamentals and Application

    Composites of resonant dielectric rods: A test of their behavior as metamaterial refractive elements

    Full text link
    We report numerical experiments of optical wave propagation in composites of high refractive index dielectric rods at frequencies where their first electric and magnetic Mie resonances are excited. The arrays of these particles have been extensively studied and proposed as non-absorbing and isotropic metamaterials. We show that negative refraction, observed in ordered particle arrays, is due to diffraction and that an effective medium theory yields constitutive parameters that do not reproduce the observations in these composites, whose transmission also depends on the sample shape. This is further confirmed by disordering the arrays, a case in which large transmission losses appear due to extinction by resonant scattering from the particles. Therefore, these composites although little absorbing have large extinction due to scattering

    Strong magnetic response of submicron Silicon particles in the infrared

    Get PDF
    High-permittivity dielectric particles with resonant magnetic properties are being explored as constitutive elements of new metamaterials and devices in the microwave regime. Magnetic properties of low-loss dielectric nanoparticles in the visible or infrared are not expected due to intrinsic low refractive index of optical materials in these regimes. Here we analyze the dipolar electric and magnetic response of loss-less dielectric spheres made of moderate permittivity materials. For low material refractive index there are no sharp resonances due to strong overlapping between different multipole contributions. However, we find that Silicon particles with refractive index 3.5 and radius approx. 200nm present a dipolar and strong magnetic resonant response in telecom and near-infrared frequencies, (i.e. at wavelengths approx. 1.2-2 micrometer). Moreover, the light scattered by these Si particles can be perfectly described by dipolar electric and magnetic fields, quadrupolar and higher order contributions being negligible.Comment: 10 pages, 5 figure

    Photon Management in Two-Dimensional Disordered Media

    Full text link
    Elaborating reliable and versatile strategies for efficient light coupling between free space and thin films is of crucial importance for new technologies in energy efficiency. Nanostructured materials have opened unprecedented opportunities for light management, notably in thin-film solar cells. Efficient coherent light trapping has been accomplished through the careful design of plasmonic nanoparticles and gratings, resonant dielectric particles and photonic crystals. Alternative approaches have used randomly-textured surfaces as strong light diffusers to benefit from their broadband and wide-angle properties. Here, we propose a new strategy for photon management in thin films that combines both advantages of an efficient trapping due to coherent optical effects and broadband/wide-angle properties due to disorder. Our approach consists in the excitation of electromagnetic modes formed by multiple light scattering and wave interference in two-dimensional random media. We show, by numerical calculations, that the spectral and angular responses of thin films containing disordered photonic patterns are intimately related to the in-plane light transport process and can be tuned through structural correlations. Our findings, which are applicable to all waves, are particularly suited for improving the absorption efficiency of thin-film solar cells and can provide a novel approach for high-extraction efficiency light-emitting diodes

    Silicon Mie Resonators for Highly Directional Light Emission from monolayer MoS2

    Get PDF
    Controlling light emission from quantum emitters has important applications ranging from solid-state lighting and displays to nanoscale single-photon sources. Optical antennas have emerged as promising tools to achieve such control right at the location of the emitter, without the need for bulky, external optics. Semiconductor nanoantennas are particularly practical for this purpose because simple geometries, such as wires and spheres, support multiple, degenerate optical resonances. Here, we start by modifying Mie scattering theory developed for plane wave illumination to describe scattering of dipole emission. We then use this theory and experiments to demonstrate several pathways to achieve control over the directionality, polarization state, and spectral emission that rely on a coherent coupling of an emitting dipole to optical resonances of a Si nanowire. A forward-to-backward ratio of 20 was demonstrated for the electric dipole emission at 680 nm from a monolayer MoS2 by optically coupling it to a Si nanowire

    Past Achievements and Future Challenges in 3D Photonic Metamaterials

    Full text link
    Photonic metamaterials are man-made structures composed of tailored micro- or nanostructured metallo-dielectric sub-wavelength building blocks that are densely packed into an effective material. This deceptively simple, yet powerful, truly revolutionary concept allows for achieving novel, unusual, and sometimes even unheard-of optical properties, such as magnetism at optical frequencies, negative refractive indices, large positive refractive indices, zero reflection via impedance matching, perfect absorption, giant circular dichroism, or enhanced nonlinear optical properties. Possible applications of metamaterials comprise ultrahigh-resolution imaging systems, compact polarization optics, and cloaking devices. This review describes the experimental progress recently made fabricating three-dimensional metamaterial structures and discusses some remaining future challenges
    • …
    corecore