247 research outputs found

    Essential self-adjointness for combinatorial Schr\"odinger operators II- Metrically non complete graphs

    Full text link
    We consider weighted graphs, we equip them with a metric structure given by a weighted distance, and we discuss essential self-adjointness for weighted graph Laplacians and Schr\"odinger operators in the metrically non complete case.Comment: Revisited version: Ognjen Milatovic wrote to us that he had discovered a gap in the proof of theorem 4.2 of our paper. As a consequence we propose to make an additional assumption (regularity property of the graph) to this theorem. A new subsection (4.1) is devoted to the study of this property and some details have been changed in the proof of theorem 4.

    The problem of deficiency indices for discrete Schr\"odinger operators on locally finite graphs

    Get PDF
    The number of self-adjoint extensions of a symmetric operator acting on a complex Hilbert space is characterized by its deficiency indices. Given a locally finite unoriented simple tree, we prove that the deficiency indices of any discrete Schr\"odinger operator are either null or infinite. We also prove that almost surely, there is a tree such that all discrete Schr\"odinger operators are essentially self-adjoint. Furthermore, we provide several criteria of essential self-adjointness. We also adress some importance to the case of the adjacency matrix and conjecture that, given a locally finite unoriented simple graph, its the deficiency indices are either null or infinite. Besides that, we consider some generalizations of trees and weighted graphs.Comment: Typos corrected. References and ToC added. Paper slightly reorganized. Section 3.2, about the diagonalization has been much improved. The older section about the stability of the deficiency indices in now in appendix. To appear in Journal of Mathematical Physic

    Quantum breaking time near classical equilibrium points

    Get PDF
    By using numerical and semiclassical methods, we evaluate the quantum breaking, or Ehrenfest time for a wave packet localized around classical equilibrium points of autonomous one-dimensional systems with polynomial potentials. We find that the Ehrenfest time diverges logarithmically with the inverse of the Planck constant whenever the equilibrium point is exponentially unstable. For stable equilibrium points, we have a power law divergence with exponent determined by the degree of the potential near the equilibrium point.Comment: 4 pages, 5 figure

    Topological properties of quantum periodic Hamiltonians

    Full text link
    We consider periodic quantum Hamiltonians on the torus phase space (Harper-like Hamiltonians). We calculate the topological Chern index which characterizes each spectral band in the generic case. This calculation is made by a semi-classical approach with use of quasi-modes. As a result, the Chern index is equal to the homotopy of the path of these quasi-modes on phase space as the Floquet parameter (\theta) of the band is varied. It is quite interesting that the Chern indices, defined as topological quantum numbers, can be expressed from simple properties of the classical trajectories.Comment: 27 pages, 14 figure

    Semiclassical transmission across transition states

    Full text link
    It is shown that the probability of quantum-mechanical transmission across a phase space bottleneck can be compactly approximated using an operator derived from a complex Poincar\'e return map. This result uniformly incorporates tunnelling effects with classically-allowed transmission and generalises a result previously derived for a classically small region of phase space.Comment: To appear in Nonlinearit

    Eigenvalues of Laplacian with constant magnetic field on non-compact hyperbolic surfaces with finite area

    Get PDF
    We consider a magnetic Laplacian −ΔA=(id+A)⋆(id+A)-\Delta_A=(id+A)^\star (id+A) on a noncompact hyperbolic surface \mM with finite area. AA is a real one-form and the magnetic field dAdA is constant in each cusp. When the harmonic component of AA satifies some quantified condition, the spectrum of −ΔA-\Delta_A is discrete. In this case we prove that the counting function of the eigenvalues of −ΔA-\Delta_{A} satisfies the classical Weyl formula, even when $dA=0.

    Semi-classical study of the Quantum Hall conductivity

    Full text link
    The semi-classical study of the integer Quantum Hall conductivity is investigated for electrons in a bi-periodic potential V(x,y)V(x,y). The Hall conductivity is due to the tunnelling effect and we concentrate our study to potentials having three wells in a periodic cell. A non-zero topological conductivity requires special conditions for the positions, and shapes of the wells. The results are derived analytically and well confirmed by numerical calculations.Comment: 23 pages, 13 figure

    Fractional Hamiltonian Monodromy from a Gauss-Manin Monodromy

    Full text link
    Fractional Hamiltonian Monodromy is a generalization of the notion of Hamiltonian Monodromy, recently introduced by N. N. Nekhoroshev, D. A. Sadovskii and B. I. Zhilinskii for energy-momentum maps whose image has a particular type of non-isolated singularities. In this paper, we analyze the notion of Fractional Hamiltonian Monodromy in terms of the Gauss-Manin Monodromy of a Riemann surface constructed from the energy-momentum map and associated to a loop in complex space which bypasses the line of singularities. We also prove some propositions on Fractional Hamiltonian Monodromy for 1:-n and m:-n resonant systems.Comment: 39 pages, 24 figures. submitted to J. Math. Phy

    Families of spherical caps: spectra and ray limit

    Full text link
    We consider a family of surfaces of revolution ranging between a disc and a hemisphere, that is spherical caps. For this family, we study the spectral density in the ray limit and arrive at a trace formula with geodesic polygons describing the spectral fluctuations. When the caps approach the hemisphere the spectrum becomes equally spaced and highly degenerate whereas the derived trace formula breaks down. We discuss its divergence and also derive a different trace formula for this hemispherical case. We next turn to perturbative corrections in the wave number where the work in the literature is done for either flat domains or curved without boundaries. In the present case, we calculate the leading correction explicitly and incorporate it into the semiclassical expression for the fluctuating part of the spectral density. To the best of our knowledge, this is the first calculation of such perturbative corrections in the case of curvature and boundary.Comment: 28 pages, 7 figure

    Semi-classical analysis and passive imaging

    Full text link
    Passive imaging is a new technique which has been proved to be very efficient, for example in seismology: the correlation of the noisy fields, computed from the fields recorded at different points, is strongly related to the Green function of the wave propagation. The aim of this paper is to provide a mathematical context for this approach and to show, in particular, how the methods of semi-classical analysis can be be used in order to find the asymptotic behaviour of the correlations.Comment: Invited paper to appear in NONLINEARITY; Accepted Revised versio
    • …
    corecore