We consider periodic quantum Hamiltonians on the torus phase space
(Harper-like Hamiltonians). We calculate the topological Chern index which
characterizes each spectral band in the generic case. This calculation is made
by a semi-classical approach with use of quasi-modes. As a result, the Chern
index is equal to the homotopy of the path of these quasi-modes on phase space
as the Floquet parameter (\theta) of the band is varied. It is quite
interesting that the Chern indices, defined as topological quantum numbers, can
be expressed from simple properties of the classical trajectories.Comment: 27 pages, 14 figure