165 research outputs found
NASA technology utilization survey on composite materials
NASA and NASA-funded contractor contributions to the field of composite materials are surveyed. Existing and potential non-aerospace applications of the newer composite materials are emphasized. Economic factors for selection of a composite for a particular application are weight savings, performance (high strength, high elastic modulus, low coefficient of expansion, heat resistance, corrosion resistance,), longer service life, and reduced maintenance. Applications for composites in agriculture, chemical and petrochemical industries, construction, consumer goods, machinery, power generation and distribution, transportation, biomedicine, and safety are presented. With the continuing trend toward further cost reductions, composites warrant consideration in a wide range of non-aerospace applications. Composite materials discussed include filamentary reinforced materials, laminates, multiphase alloys, solid multiphase lubricants, and multiphase ceramics. New processes developed to aid in fabrication of composites are given
Comparison of Peat–Perlite-based and Peat–Biochar-based Substrates with Varying Rates of Calcium Silicate on Growth and Cannabinoid Production of Cannabis sativa ‘BaOx’
Growers have been searching for alternative horticultural growing media components because of their desire to use sustainable resources. Biochar is a carbon-based material that has been evaluated for use as an alternative aggregate in peat-based soilless substrates. Additionally, silicon (Si) has been examined as a beneficial element to promote plant growth and plant quality in a variety of crops. However, there has been limited research regarding the interaction of biochar as an aggregate and Si in soilless substrates. This study aimed to determine the impact of Si and biochar on plant growth and nutrient uptake for greenhouse-cultivated hemp (Cannabis sativa L.). Hemp plants were grown in one of 12 different substrate blends: with two rates of calcium silicate (CaSiO3), two aggregate types of biochar (medium or coarse) or perlite, and aggregate percentages of 85% peat + 15% aggregate and 70% peat + 30% aggregate. The cannabinoid concentration, plant height, diameter, or total plant biomass were similar across all substrate blends after 12 weeks of growth. Additionally, the use of CaSiO3 as a Si substrate amendment increased Si foliar concentrations, and the addition of biochar to peat-based mixes did not limit the Si availability for plant uptake. However, Si substrate amendments did not impact plant height, diameter, or total plant biomass. This suggests that the biochar tested during this study is suitable in peat-based substrates for C. sativa ‘BaOx’ production at rates up to 30% (by volume) in peat-based substrates with CaSiO3 amendments
A catalog of natural products occurring in watermelon— Citrullus lanatus
Sweet dessert watermelon ( Citrullus lanatus ) is one of the most important vegetable crops consumed throughout the world. The chemical composition of watermelon provides both high nutritional value and various health benefits. The present manuscript introduces a catalog of 1,679 small molecules occurring in the watermelon and their cheminformatics analysis for diverse features. In this catalog, the phytochemicals are associated with the literature describing their presence in the watermelon plant, and when possible, concentration values in various plant parts (flesh, seeds, leaves, roots, rind). Also cataloged are the chemical classes, molecular weight and formula, chemical structure, and certain physical and chemical properties for each phytochemical. In our view, knowing precisely what is in what we eat, as this catalog does for watermelon, supports both the rationale for certain controlled feeding studies in the field of precision nutrition, and plant breeding efforts for the development of new varieties with enhanced concentrations of specific phytochemicals. Additionally, improved and comprehensive collections of natural products accessible to the public will be especially useful to researchers in nutrition, cheminformatics, bioinformatics, and drug development, among other disciplines
Recent advances in banana (Musa spp.) biofortification to alleviate vitamin A deficiency
Open Access Article; Published online: 04 Oct 2018Vitamin A deficiency (VAD) is one of the most prevalent micronutrient deficiencies that disproportionately affects low income populations in developing countries. Traditional breeding and modern biotechnology have significant potential to enhance micronutrient bioavailability in crops through biofortification. Bananas (Musa spp.) are economically important fruit crops grown throughout tropical and sub-tropical regions of the world where VAD is most prevalent. Some banana genotypes are rich in provitamin A carotenoids (pVACs), providing an opportunity to use bananas as a readily available vehicle for provitamin A delivery. This review summarizes the progress made in carotenoid research in bananas relative to banana diversity and the use of conventional breeding and transgenic approaches aimed at banana biofortification to address vitamin A deficiency. Existing reports on sampling strategies, pVAC retention and bioavailability are also evaluated as essential components for a successful banana biofortification effort. The wide variability of pVACs reported in banana cultivars coupled with recent advances in unravelling the diversity and genetic improvement of this globally important but often-neglected staple fruit crop underscores their importance in biofortification schemes
Atherosclerosis profile and incidence of cardiovascular events: a population-based survey
<p>Abstract</p> <p>Background</p> <p>Atherosclerosis is a chronic progressive disease often presenting as clinical cardiovascular disease (CVD) events. This study evaluated the characteristics of individuals with a diagnosis of atherosclerosis and estimated the incidence of CVD events to assist in the early identification of high-risk individuals.</p> <p>Methods</p> <p>Respondents to the US SHIELD baseline survey were followed for 2 years to observe incident self-reported CVD. Respondents had subclinical atherosclerosis if they reported a diagnosis of narrow or blocked arteries/carotid artery disease without a past clinical CVD event (heart attack, stroke or revascularization). Characteristics of those with atherosclerosis and incident CVD were compared with those who did not report atherosclerosis at baseline but had CVD in the following 2 years using chi-square tests. Logistic regression model identified characteristics associated with atherosclerosis and incident events.</p> <p>Results</p> <p>Of 17,640 respondents, 488 (2.8%) reported having subclinical atherosclerosis at baseline. Subclinical atherosclerosis was associated with age, male gender, dyslipidemia, circulation problems, hypertension, past smoker, and a cholesterol test in past year (OR = 2.2) [all p < 0.05]. Incident CVD was twice as high in respondents with subclinical atherosclerosis (25.8%) as in those without atherosclerosis or clinical CVD (12.2%). In individuals with subclinical atherosclerosis, men (RR = 1.77, p = 0.050) and individuals with circulation problems (RR = 2.36, p = 0.003) were at greatest risk of experiencing CVD events in the next 2 years.</p> <p>Conclusion</p> <p>Self-report of subclinical atherosclerosis identified an extremely high-risk group with a >25% risk of a CVD event in the next 2 years. These characteristics may be useful for identifying individuals for more aggressive diagnostic and therapeutic efforts.</p
The cost of large numbers of hypothesis tests on power, effect size and sample size
Advances in high-throughput biology and computer science are driving an exponential increase in the number of hypothesis tests in genomics and other scientific disciplines. Studies using current genotyping platforms frequently include a million or more tests. In addition to the monetary cost, this increase imposes a statistical cost owing to the multiple testing corrections needed to avoid large numbers of false-positive results. To safeguard against the resulting loss of power, some have suggested sample sizes on the order of tens of thousands that can be impractical for many diseases or may lower the quality of phenotypic measurements. This study examines the relationship between the number of tests on the one hand and power, detectable effect size or required sample size on the other. We show that once the number of tests is large, power can be maintained at a constant level, with comparatively small increases in the effect size or sample size. For example at the 0.05 significance level, a 13% increase in sample size is needed to maintain 80% power for ten million tests compared with one million tests, whereas a 70% increase in sample size is needed for 10 tests compared with a single test. Relative costs are less when measured by increases in the detectable effect size. We provide an interactive Excel calculator to compute power, effect size or sample size when comparing study designs or genome platforms involving different numbers of hypothesis tests. The results are reassuring in an era of extreme multiple testing
Fresh-cut carrot (cv. Nantes) quality as affected by abiotic stress (heat shock and UV-C irradiation) pre-treatments
Available at Sciverse ScienceDirectAbiotic stresses such as heat shock and UV-C irradiation can be used to induce synthesis of bioactive
compounds and to prevent decay in fresh-cut fruits and vegetables. This study aimed to evaluate the
effects of heat shock and UV-C radiation stress treatments, applied in whole carrots, on the overall
quality of fresh-cut carrot cv. Nantes during storage (5 C). Heat shock (HS, 100 C/45 s) and UV-C
(0.78 0.36 kJ/m2) treated samples had higher phenolic content and exhibited reduced POD activities
during storage when compared to control (Ctr) samples (200 mg/L free chlorine/1 min). All samples
showed reduced carotenoid content considering raw material. Nonetheless, UV samples registered
a three-fold increase in carotenoid content in subsequent storage. Fresh-cut carrot colour showed
a continuous increase in whiteness index (WI) values during storage regardless of treatment without
impairing visual quality. Respiratory metabolism was affected by both abiotic stress treatments since
reduced O2/CO2 rates were found, more significant in HS samples. The decontamination effect was more
expressive in HS samples, where a 2.5 Log10 cfu/g reduction in initial microbial load and reduced
microbial growth were achieve
There and back again: historical perspective and future directions for Vaccinium breeding and research studies
The genus Vaccinium L. (Ericaceae) contains a wide diversity of culturally and economically important berry crop species. Consumer demand and scientific research in blueberry (Vaccinium spp.) and cranberry (Vaccinium macrocarpon) have increased worldwide over the crops' relatively short domestication history (~100 years). Other species, including bilberry (Vaccinium myrtillus), lingonberry (Vaccinium vitis-idaea), and ohelo berry (Vaccinium reticulatum) are largely still harvested from the wild but with crop improvement efforts underway. Here, we present a review article on these Vaccinium berry crops on topics that span taxonomy to genetics and genomics to breeding. We highlight the accomplishments made thus far for each of these crops, along their journey from the wild, and propose research areas and questions that will require investments by the community over the coming decades to guide future crop improvement efforts. New tools and resources are needed to underpin the development of superior cultivars that are not only more resilient to various environmental stresses and higher yielding, but also produce fruit that continue to meet a variety of consumer preferences, including fruit quality and health related trait
Molecular Characterization of a Strawberry FaASR Gene in Relation to Fruit Ripening
BACKGROUND: ABA-, stress- and ripening-induced (ASR) proteins have been reported to act as a downstream component involved in ABA signal transduction. Although much attention has been paid to the roles of ASR in plant development and stress responses, the mechanisms by which ABA regulate fruit ripening at the molecular level are not fully understood. In the present work, a strawberry ASR gene was isolated and characterized (FaASR), and a polyclonal antibody against FaASR protein was prepared. Furthermore, the effects of ABA, applied to two different developmental stages of strawberry, on fruit ripening and the expression of FaASR at transcriptional and translational levels were investigated. METHODOLOGY/PRINCIPAL FINDINGS: FaASR, localized in the cytoplasm and nucleus, contained 193 amino acids and shared common features with other plant ASRs. It also functioned as a transcriptional activator in yeast with trans-activation activity in the N-terminus. During strawberry fruit development, endogenous ABA content, levels of FaASR mRNA and protein increased significantly at the initiation of ripening at a white (W) fruit developmental stage. More importantly, application of exogenous ABA to large green (LG) fruit and W fruit markedly increased endogenous ABA content, accelerated fruit ripening, and greatly enhanced the expression of FaASR transcripts and the accumulation of FaASR protein simultaneously. CONCLUSIONS: These results indicate that FaASR may be involved in strawberry fruit ripening. The observed increase in endogenous ABA content, and enhanced FaASR expression at transcriptional and translational levels in response to ABA treatment might partially contribute to the acceleration of strawberry fruit ripening
- …