21 research outputs found

    Sicegar: R package for sigmoidal and double-sigmoidal curve fitting

    No full text
    Sigmoidal and double-sigmoidal dynamics are commonly observed in many areas of biology. Here we present sicegar, an R package for the automated fitting and classification of sigmoidal and double-sigmoidal data. The package categorizes data into one of three categories, “no signal,” “sigmoidal,” or “double-sigmoidal,” by rigorously fitting a series of mathematical models to the data. The data is labeled as “ambiguous” if neither the sigmoidal nor double-sigmoidal model fit the data well. In addition to performing the classification, the package also reports a wealth of metrics as well as biologically meaningful parameters describing the sigmoidal or double-sigmoidal curves. In extensive simulations, we find that the package performs well, can recover the original dynamics even under fairly high noise levels, and will typically classify curves as “ambiguous” rather than misclassifying them. The package is available on CRAN and comes with extensive documentation and usage examples

    Predicting bacterial growth conditions from mRNA and protein abundances.

    No full text
    Cells respond to changing nutrient availability and external stresses by altering the expression of individual genes. Condition-specific gene expression patterns may thus provide a promising and low-cost route to quantifying the presence of various small molecules, toxins, or species-interactions in natural environments. However, whether gene expression signatures alone can predict individual environmental growth conditions remains an open question. Here, we used machine learning to predict 16 closely-related growth conditions using 155 datasets of E. coli transcript and protein abundances. We show that models are able to discriminate between different environmental features with a relatively high degree of accuracy. We observed a small but significant increase in model accuracy by combining transcriptome and proteome-level data, and we show that measurements from stationary phase cells typically provide less useful information for discriminating between conditions as compared to exponentially growing populations. Nevertheless, with sufficient training data, gene expression measurements from a single species are capable of distinguishing between environmental conditions that are separated by a single environmental variable

    Assessment of stored red blood cells through lab-on-a-chip technologies for precision transfusion medicine

    No full text
    Transfusion of red blood cells (RBCs) is one of the most valuable and widespread treatments in modern medicine. Lifesaving RBC transfusions are facilitated by the cold storage of RBC units in blood banks worldwide. Currently, RBC storage and subsequent transfusion practices are performed using simplistic workflows. More specifically, most blood banks follow the “first-in-first-out” principle to avoid wastage, whereas most healthcare providers prefer the “last-in-first-out” approach simply favoring chronologically younger RBCs. Neither approach addresses recent advances through -omics showing that stored RBC quality is highly variable depending on donor-, time-, and processing-specific factors. Thus, it is time to rethink our workflows in transfusion medicine taking advantage of novel technologies to perform RBC quality assessment. We imagine a future where lab-on-a-chip technologies utilize novel predictive markers of RBC quality identified by -omics and machine learning to usher in a new era of safer and precise transfusion medicine.</p

    Assessment of stored red blood cells through lab-on-a-chip technologies for precision transfusion medicine

    No full text
    Abstract Transfusion of red blood cells (RBCs) is one of the most valuable and widespread treatments in modern medicine. Lifesaving RBC transfusions are facilitated by the cold storage of RBC units in blood banks worldwide. Currently, RBC storage and subsequent transfusion practices are performed using simplistic workflows. More specifically, most blood banks follow the “first-in-first-out” principle to avoid wastage, whereas most healthcare providers prefer the “last-in-first-out” approach simply favoring chronologically younger RBCs. Neither approach addresses recent advances through -omics showing that stored RBC quality is highly variable depending on donor-, time-, and processing-specific factors. Thus, it is time to rethink our workflows in transfusion medicine taking advantage of novel technologies to perform RBC quality assessment. We imagine a future where lab-on-a-chip technologies utilize novel predictive markers of RBC quality identified by -omics and machine learning to usher in a new era of safer and precise transfusion medicine
    corecore