19 research outputs found

    An Analysis of the Sensitivity of Proteogenomic Mapping of Somatic Mutations and Novel Splicing Events in Cancer

    Get PDF
    Improvements in mass spectrometry (MS)-based peptide sequencing provide a new opportunity to determine whether polymorphisms, mutations, and splice variants identified in cancer cells are translated. Herein, we apply a proteogenomic data integration tool (QUILTS) to illustrate protein variant discovery using whole genome, whole transcriptome, and global proteome datasets generated from a pair of luminal and basal-like breast-cancer-patient-derived xenografts (PDX). The sensitivity of proteogenomic analysis for singe nucleotide variant (SNV) expression and novel splice junction (NSJ) detection was probed using multiple MS/MS sample process replicates defined here as an independent tandem MS experiment using identical sample material. Despite analysis of over 30 sample process replicates, only about 10% of SNVs (somatic and germline) detected by both DNA and RNA sequencing were observed as peptides. An even smaller proportion of peptides corresponding to NSJ observed by RNA sequencing were detected (<0.1%). Peptides mapping to DNA-detected SNVs without a detectable mRNA transcript were also observed, suggesting that transcriptome coverage was incomplete (∼80%). In contrast to germline variants, somatic variants were less likely to be detected at the peptide level in the basal-like tumor than in the luminal tumor, raising the possibility of differential translation or protein degradation effects. In conclusion, this large-scale proteogenomic integration allowed us to determine the degree to which mutations are translated and identify gaps in sequence coverage, thereby benchmarking current technology and progress toward whole cancer proteome and transcriptome analysis

    Electrophysiological characterization of store-operated and agonist-induced Ca2+ entry pathways in endothelial cells

    No full text
    In endothelial cells, agonist-induced Ca(2+) entry takes place via the store-operated Ca(2+) entry pathway and/or via channel(s) gated by second messengers. As cell stimulation leads to both a partial Ca(2+) store depletion as well as the production of second messengers, these two pathways are problematic to distinguish. We showed that passive endoplasmic reticulum (ER) depletion by thapsigargin or cell stimulation by histamine activated a similar Ca(2+)-release-activated Ca(2+) current (CRAC)-like current when 10 mM Ba(2+)/2 mM Ca(2+) was present in the extracellular solution. Importantly, during voltage clamp recordings, histamine stimulation largely depleted the ER Ca(2+) store, explaining the activation of a CRAC-like current (due to store depletion) upon histamine in Ba(2+) medium. On the contrary, in the presence of 10 mM Ca(2+), the ER Ca(2+) content remained elevated, and histamine induced an outward rectifying current that was inhibited by Ni(2+) and KB-R7943, two blockers of the Na(+)/Ca(2+) exchanger (NCX). Both blockers also reduced histamine-induced cytosolic Ca(2+) elevation. In addition, removing extracellular Na(+) increased the current amplitude which is in line with a current supported by the NCX. These data are consistent with the involvement of the NCX working in reverse mode (Na(+) out/Ca(2+) in) during agonist-induced Ca(2+) entry in endothelial cells
    corecore