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Improvements in mass spectrometry (MS)-based peptide
sequencing provide a new opportunity to determine
whether polymorphisms, mutations, and splice variants
identified in cancer cells are translated. Herein, we apply
a proteogenomic data integration tool (QUILTS) to illus-
trate protein variant discovery using whole genome,
whole transcriptome, and global proteome datasets gen-
erated from a pair of luminal and basal-like breast-can-
cer-patient-derived xenografts (PDX). The sensitivity of
proteogenomic analysis for singe nucleotide variant (SNV)
expression and novel splice junction (NSJ) detection was
probed using multiple MS/MS sample process replicates
defined here as an independent tandem MS experiment
using identical sample material. Despite analysis of over
30 sample process replicates, only about 10% of SNVs
(somatic and germline) detected by both DNA and RNA
sequencing were observed as peptides. An even smaller
proportion of peptides corresponding to NSJ observed by

RNA sequencing were detected (<0.1%). Peptides map-
ping to DNA-detected SNVs without a detectable mRNA
transcript were also observed, suggesting that transcrip-
tome coverage was incomplete (�80%). In contrast to
germline variants, somatic variants were less likely to be
detected at the peptide level in the basal-like tumor than in
the luminal tumor, raising the possibility of differential
translation or protein degradation effects. In conclusion,
this large-scale proteogenomic integration allowed us to
determine the degree to which mutations are translated and
identify gaps in sequence coverage, thereby benchmarking
current technology and progress toward whole cancer pro-
teome and transcriptome analysis. Molecular & Cellular
Proteomics 15: 10.1074/mcp.M115.056226, 1060–1071,
2016.

Massively parallel sequencing (MPS)1 of cancer genomes
has demonstrated enormous complexity, and it is often un-
clear which somatic mutations drive tumor biology and which
are nonfunctional passenger mutations that passively accu-
mulate. RNA sequencing is frequently used to determine
which nucleotide variants are transcribed and therefore have
the potential for biological function. However, many mutations
detected at the DNA level are not observed at the mRNA level,
and their observation is dependent upon expression of the
stability of the mRNA (1). Mutation detection at the peptide
level clearly increases the confidence that any given variant is
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a potential biological driver, and by assessing peptide levels
across all of an individual’s polymorphisms, an independent
assessment of transcriptome coverage can be obtained.

Integrated proteogenomic methods that combine MPS
analysis and proteomics are of particular importance for iden-
tifying novel peptides resulting from somatic mutations or
inherited polymorphisms. The identification of peptide se-
quences by mass spectrometry (MS) relies heavily on the
quality of the protein sequence database. Use of databases
with missing peptide sequences will fail to identify the corre-
sponding peptides within the proteomic data; however, ad-
dressing this by including large numbers of irrelevant se-
quences in the search will decrease sensitivity. Therefore, it is
essential that data acquired through MPS are used to create
tumor-specific databases, incorporating the possibility of var-
iant proteins arising through somatic mutation, inherited poly-
morphisms, alternatively spliced isoforms, and novel expres-
sion. The goal of this study was to analyze the flow of
information though the central dogma of biology in an unbi-
ased and comprehensive way to profoundly understand the
aberrant information flux that underlies all cancer biology
(2–5).

Integrated proteogenomic methodologies have been suc-
cessfully implemented in several model systems, including
mouse and human cell lines (2, 4–7), and in other model
systems for gene annotation (3, 8–10). Sample-specific DNA
databases in MS identification pipelines are a developing tool,
but we lack a clear understanding of the proteomic depth and
sensitivity required to obtain a truly comprehensive mutant or
germline variant peptide identification. To address these is-
sues, we used two patient-derived xenograft (PDX) breast
cancer models that provided enough material for extensive
genomic, transcriptomic, and proteomic analyses to deter-
mine the capabilities and limitations of MS/MS for novel pro-
tein isoforms identification in cancer cells.

EXPERIMENTAL PROCEDURES

Patient-Derived Xenograft (PDX) Tumors—Patient-derived xeno-
graft (PDX) tumors from established Basal (WHIM2) and Luminal-B
(WHIM16) breast cancer intrinsic subtypes (11) (12) were obtained
from the Washington University Human and Mouse-Linked Evaluation
of Tumors Core. The tumors were raised subcutaneously in 8-week-
old NOD.Cg-Prkdcscid Il2rgtm1Wjl/SzJ mice (Jackson Labs, Bar Har-
bor, ME) as previously described (13) (14) and in compliance with NIH
regulations and institutional guidelines and approved by the institu-
tional review board at Washington University. These tumors have
significantly different gene expression and proteomic signatures (14)
that are related to their intrinsic biology and endocrine signaling.
Tumors were harvested and processed to a frozen powder with
minimal ischemia time as previously described (15, 16). Tumors from
each animal were harvested by surgical excision at �1.5 cm3 with
minimal ischemia time by immediate immersion in a liquid nitrogen
bath. The tumor tissues were then placed in precooled tubes on dry
ice and stored at �80 °C. A tissue “pool” of cryopulverized tumors
was prepared in order to generate sufficient material that could be
reliably shared and analyzed between multiple laboratories. Briefly,
tumor pieces were transferred into precooled Covaris Tissue-Tube 1

Extra (TT01xt) bags (Covaris #520007) and processed in a Covaris
CP02 Cryoprep device using different impact settings according to
the total tumor tissue weight: �250 mg � 3; 250–350 mg � 4;
350–440 mg � 5; 440–550 mg � 6. Tissue powder was transferred
to an aluminum weighing dish (VWR #1131–436) on dry ice, and the
tissue was thoroughly mixed with a metal spatula precooled in liquid
nitrogen. The tissue powder was then partitioned (� 100 mg aliquots)
into precooled cryovials (Corning #430487). (Note: Cryopulverized
tissue will melt if transferred to a plastic weighing boat.) All proce-
dures were carried out on dry ice to maintain tissue in a powdered,
frozen state.

Whole Genome Analysis and RNA Sequencing—Methodologies
and data repositories have been published (14). Variant calling using
the Whole Genome Sequencing (WGS) data were performed by an
in-house developed pipeline combining several variant calling algo-
rithms (VarScan (17), Genome Analysis Toolkit (GATK) (18), and Pindel
(19)) to achieve better accuracy and sensitivity. For the RNA-Seq
analysis, raw FASTQ files were trimmed by 1bp from both ends. All
trimmed RNA-Seq reads were aligned to the human reference ge-
nome version hg19 using software TopHat version 2.0.3 with -g 1,
-bowtie1 (version 0.12.7.0), -M, -x 1, -n 2, -no-coverage-search, and
-fusion-search settings to generate Binary Sequence Alignment/Map
(BAM) files, junction files, and fusion files. Then software TopHat-
Fusion (20) version 2.0.3 and ChimeraScan fusion detection (17, 18)
(default parameters) were used to generate final potential fusion
genes. BedTools and in-house developed software were then used to
generate the base pair counts for each exon based on Ensembl
annotation file version GRCh37.68 using mapped reads in BAM
format.

Global Proteomics—Tumor pieces were cryopulverized in pre-
cooled Covaris Tissue-Tube 1 Extra (TT01xt) bags and processed in
a Covaris CP02 Cryoprep device, with impact setting derived from the
weight of the tumor (�250 mg � 3; 250–350 mg � 4; 350–440 mg �
5; 440–550 mg � 6). The resulting powder was then transferred to a
weighing dish, mixed using a precooled metal spatula, and parti-
tioned into �100 mg aliquots. All procedures were completed on dry
ice to maintain sample freezing. Proteins were reduced, alkylated,
and subjected to trypsin digestion. Peptides were separated using an
off-line high pH (7.5 or 10) reversed-phase column and analyzed by
Thermo Fisher Q-Exactive and Orbitrap Velos instruments. The iTRAQ
analysis was completed by three separate sites, and the label-free
analysis was performed at two separate sites. The data are freely
available through the Clinical Proteomic Tumor Analysis Consortium
(CPTAC) Data Portal (https://cptacdcc.georgetown.edu/cptac/study/
showDetails?accNum�S010).

Tumor-Specific Database Construction—QUILTS is a publicly avail-
able software (quilts.fenyolab.org) that can take in up to four inputs for
sample-specific database creation: (i) a Browser Extensible Data (BED)
file containing RNA-Seq predicted junctions; Variant Call Format (VCF)
files containing (ii) somatic variants and (iii) germline variants; and (iv) a
fusion file containing all predicted fusion genes. The output of QUILTS
is a protein sequence FASTA file, using either Ensembl or RefSeq as a
reference for the hg19 proteome and genome. Example VCF, BED
(http://genome.ucsc.edu/FAQ/FAQformat.html), and fusion input files
are available alongside the QUILTS webserver for mock database cre-
ation and file formatting.

Step 1. Creation of Variant Peptide Database—QUILTS parses out
details of variant location and nucleotide change from the variant VCF
file for subsequent incorporation into genomic sequences. In cases
where both somatic and germline variants are present, tumor-specific
variants are obtained by filtering out all germline variants from the
somatic variant calls. Based on intron/exon boundaries from Ensembl
(version 70) or RefSeq (version 20130727), sequences of annotated
coding regions are extracted, and variant changes were incorporated
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into these regions based on genomic location. The modified se-
quences are then translated to proteins in a single reading frame and
stored as a FASTA file (Fig. 1A). Stop codon removal and insertion
due to single amino acid changes were accounted for and highlighted
within file output. In this study, even low-quality variants were in-
cluded in the variant database to allow for validation by mass spec-
trometric analysis.

Step 2. Creation of Junction Protein Database—The RNA-Seq-
derived junction BED file contains predicted boundaries of adjoining
exons (chromosome, intron start, intron end) for each sample.
QUILTS filters out splice junctions matching previously annotated
boundaries (Ensembl or RefSeq), leaving only novel junction which
are split into three categories, unannotated alterative splicing (two

known exons, Fig. 1B), completely novel junctions (no known exons,
Figs. 1F and 1G), and partially novel junctions (one known exon, Figs.
1C-1E). The required frame translation for in silico protein synthesis is
indication in Fig. 2 for each scenario. Variant peptides are incorpo-
rated into the sequences of the alternatively spliced proteins as
described in Step 1 (Fig. 1A). In this study, junctions with at least one
supporting RNA read were included in database creation.

Step 3. Creation of Fusion Protein Database—QUILTS translates
predicted fusion gene output by a six-frame translation (Fig. 1H).
Protein coding regions with more than six consecutive amino acids
are included in the fusion protein database.

Experimental Design and Statistical Rational—Proteowizard (re-
lease 2.2.3246 (2012–1-30)) was used to convert raw MS data files to

FIG. 1. QUILTS processing of different variant scenarios. QUILTS treats each potential splicing situation differently in terms of how many
frames are translated into protein. Single amino acid changes resulting from germline or somatic variants require only one reading frame (A).
Junction-based changes include unannotated alternative splicing with conserved exon boundaries (B), truncation of an exon (C), and
elongation of an exon within an intron (D), all with conserved reading frame. For elongation of an exon in the intergenic space (E) and regions
of novel expression (F), frame translation is determined based on whether or not the novel exon boundary is up or downstream of the annotated
exon. Junctions showing completely novel expression require a 6 reading frame translation (B). Fusion genes (H) are also translated in six
frames. Situations with insertion or deletion of nucleotides are treated as junction changes as indicated above (B-D).
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mzML format for downstream data analysis. Peptide spectral match-
ing was then done using the tumor-specific QUILTS databases with
the database search engine X! Tandem CYCLONE (2013.02.01.1)
using precursor tolerance of 20 ppm and fragment mass tolerances of
20 ppm for high-resolution data and 0.4 Da for low-resolution data,
complete modifications of carbamidomethylated cysteines and
iTRAQ 4-plex on peptide N termini and lysines, potential modifica-
tions of oxidation of methionine, and deamidation of aspartic and
glutamic acid, allowing for one missed cleavage. The databases
contained a total of 1,078,922 and 1,225,632 trypic peptides for basal
and luminal, respectively. Both databases included a list of external
contaminants from common Repository of Adventitious Proteins

(cRAP) (maintained by the global proteome machine organization) in
addition to Ensembl sequences for Mus musculus. The search was
done against a concatenated database containing mouse and human
Ensembl 37.70, cRAP, basal and luminal variant peptides, and NSJ
peptides. Searches were completed independently for each center
(A-E, Table I) using a simple False Discovery Rate (FDR) with separate
target–decoy searches that were created through reversal of all pro-
tein sequences and searched in combination (21). The FDR was
calculated as described by Käll, et al. (22) and was controlled for at a
q-value of 0.01 (1%) at the peptide level. The FDR was calculated
separately for variant, junction, and references peptide (23). Informa-
tion detailing identified variant and junction peptides are included

FIG. 2. Single nucleotide variant (SNV) peptide expression in basal and luminal tumors. (A) Predicted proteomic change based on single
nucleotide variants. Purple bars show the number of predicted unique peptides based on DNA variants that were also detected by RNA-Seq,
blue bars indicate the number of predicted unique peptides based on DNA variants that were not detected by RNA-Seq, and gray bars indicate
those peptides that are not detectable by mass spectrometry techniques due to size limitations (*peptides that have lengths �6 or �30 amino
acids). (B) Proportion of DNA variants that were also identified by RNA sequencing and MS/MS proteomics for luminal and basal breast tumors.
(C) Total basal and luminal variant peptides identified by MS/MS. Identification by iTRAQ, label-free MS/MS, or both is indicated by stacked
bar color.
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(Supplemental Table 4). The dataset was also searched against the
same databases, allowing up to one amino acid substitution per
tryptic peptide, and any spectrum that in this search matched better
against a variant peptide not detected in the WGS data was removed
from the subsequent analysis. Also, peptides with length shorter than
eight amino acids were excluded. The results were further filtered on
the percentage of the intensity in the fragment mass spectra that were
explained by fragmentation of the assigned peptide sequence and
only peptides with PSM where larger than 50% of the fragment ion
intensity matched to the sequence (all peaks with intensity larger than
1% of the largest fragment peak) were included. Peptides were also
required not to have continuous gaps of larger than two amino acids,
i.e. peptides with three amino acids in a row without evidence of
fragmentation between them were included, but peptides with four or
more amino without fragment ions between them were excluded. In
addition, if the total number of gaps throughout a peptide exceeded
six, the peptide was excluded. The rationale for the filters based on
gap size was the observation that, commonly when extensive frag-
mentation is observed for one end of a peptide but not for the other
end, the identification is incorrect. In these cases, manual inspection
often reveals for high-quality spectra that the search engine has
assigned the incorrect sequence, and the correct sequence is missing
from the database that was searched.

To assess the quality of the variant peptide identification, the
distributions of the fraction of MS/MS intensity explained by the
identified peptide, the peptide mass, the e-values, and total fragment
ion intensity were compared with the distributions for all identified
peptides in the reference protein sequence database (Supplemental
Figs. 1A-1D, 1G-1J, and 1M-1P). Also, the distribution of the variant
(Supplemental Figs. 1E, 1K, and 1Q) and reference (Supplemental Fig.
1F, 1L, and 1R) peptides in the four-dimensional space spanning
MS/MS intensity explained by the identified peptide, peptide mass,
e-value, and total MS/MS intensity were compared. Because no
significant difference was observed, we conclude that the FDR for the
variant peptides can be accurately estimated using the overall pep-
tide FDR.

Also, for the NSJ peptides the quality was assessed by comparing
the distributions of the fraction of MS/MS intensity explained by the
identified peptide, the peptide mass, the e-values, and total fragment
ion intensity to the distributions for all identified peptides in the
reference protein sequence database (Supplemental Figs. 2A-2D,
2F-2I, 2K-2N). Also, the distribution of the NSJ (Supplemental Figs.
2E, 2J, and 2O) and reference (Supplemental Figs. 1F, 1L, and 1R)
peptides in the four-dimensional space spanning MS/MS intensity
explained by the identified peptide, peptide mass, e-value, and total
MS/MS intensity were compared. Again no significant difference was
observed between the NSJ peptides and the reference peptides,
indicating that the overall quality of NSJ peptides is close to that of
the reference peptides.

In addition, no significant difference was observed for germline and
somatic variant peptides (Supplemental Figs. 3A-3R) or for variant
peptides with or without mRNA evidence (Supplemental Figs. 4A-4R).

All the individual peptide spectrum matches are shown in Supple-
mental Fig. 5. The spectra are annotated with the assigned b- and
y-ions and neutral losses. The evidence for fragmentation between
pairs of amino acids is also shown by annotating the peptide se-
quence with bars with lengths proportional to the corresponding
fragment ion intensity.

For variant and novel peptide identification, a total of 18 iTRAQ and
30 label-free sample process replicates (independent tandem MS
experiments using identical sample material) were used to identify
sample-specific peptides. Peptides with at least one peptide spectral
match were considered as a positive identification. This is a reason-
able assumption because of the stringent filter that includes the

requirement of no gaps in the peptide sequence coverage larger than
two consecutive amino acid pairs and a maximum of six gaps over the
entire peptide. Following identification, peptides matching the refer-
ence human, mouse or cRAP proteomes were removed, leaving those
peptides that map only to predicted variant or novel junction pep-
tides. All variant and NSJ peptides were compared with the RefSeq
Human � Mouse protein sequence database (downloaded December
1, 2011) to filter out any known peptides that were missed by the
original filtering step. Additionally, all novel peptides were compared
against the GenBank nonredundant translation database and the
neXtProt protein database (24), and all matches were included in the
associated tables (Supplemental Tables 1 and 2). Peptides with
nonredundant matches were included in all analysis except in the
creation of highly confident variant and novel junction peptide tables,
for which they were removed. For each of the 48 process replicates,
the number of unique variant or novel peptides identified was used for
titration analysis. Robust regression was used to determine the cor-
relation between total peptides identified and novel/variant peptides
in each run. Variants were searched against the dbsnp database
(build 142) and the Catalogue of Somatic Mutations in Cancer (COS-
MIC) to determine if the genomic variant had been previously identi-
fied (Supplemental Table 1C).

As per minimum guidelines for proteogenomic studies, suggested
by Nesvizhskii (23), the custom protein sequence databases de-
scribed here are available at http://openslice.fenyolab.org/data/
compref/compref.zipand annotated spectrum for all novel splice
junction, and single nucleotide variant peptides are provided (Sup-
plemental Fig. 5).

RESULTS

PDX tumor lines were generated from primary breast tu-
mors as previously described (25). Two PDX lines (one derived
from a luminal tumor, WHIM16, and the other from a basal-like
tumor, WHIM2) were included in this study, of which the
whole genome sequences (WGS) and RNA-Seq analysis have
already been published (13, 14). In the WGS analysis, 40x-50x
coverage of 75 bp paired end reads (1.5 � 109-2 � 109) was
obtained for germline, tumor, and xenograft. RNA-Seq data of
4 � 108, 75 bp paired end reads were obtained for each
xenograft. Global proteome expression was acquired by 18
independent iTRAQ-labeled MS/MS sample process repli-
cates (each analysis contained the two luminal and two basal
samples, both of which were represented by two different
reporter ions in the iTRAQ 4-plex) and 15 independent label-
free MS/MS sample replicate pairs, containing each PDX
sample. These experiments were completed across five cen-
ters, three using iTRAQ chemical labeling and two using label-
free methods (Table I, Supplemental Fig. 6). The number of
total peptides, variant peptides, and novel junction peptides
identified by each center varied based on MS instrumentation,
fraction number, and gradient length (Table I). A total of
184,182 unique human peptides and 9,597 proteins were
identified across all datasets, representing the state-of-the-art
proteomic coverage available with current techniques. Paired
tumor-specific protein databases and corresponding deep
proteomics tandem MS data were used to first identify novel
protein isoforms involved in breast cancer progression and
second to determine the depth of proteomic analysis required
to capture comprehensive variant peptide identification.
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Variant identification through whole genome sequencing
permits the representation of nonsynonymous substitutions in
our protein sequence database, increasing the number of
tumor-specific peptides that can be identified by tandem MS
(2, 5, 9). Most MS identification methods rely on reference
databases, such as Ensembl, UniProt, or RefSeq, for peptide
matching. Unfortunately, these databases do not allow novel
peptide identification due to variations in the somatic or germ-
line genome. In order to identify tumor-specific variant pep-
tides, we used the proteogenomic integration tool Quantita-
tive Integrated Library of Translated SNPs/Splicing (QUILTS),
developed specifically for cancer proteome analysis (http://
quilts.fenyolab.org). QUILTS uses protein coding variant calls
(germline and somatic) and RNA-Seq-based junction predic-
tions to build a customized, tumor-specific database contain-
ing peptide sequences that contain single nucleotide variants
and bridging sequences from alternative splicing against the
background of a reference human proteome database.

Variant Peptide Identification—Following its construction,
each sample-specific database was used to identify tumor
and sample-specific peptides attributable to both germline
and somatic genomic variants. A total of 31,792 basal (26,421
germline and 5,371 somatic) and 28,635 luminal (16,662
germline and 11,973 somatic) variant peptides were predicted
by WGS. Of these, we expect only a portion to be both
verifiable by MS and also expressed at the mRNA level. The
portion of variants identifiable by MS can be predicted based
on peptide characteristics known to provide efficient MS iden-
tification, including low hydrophobicity and peptide length
within 6–30 amino acids. Further, peptides that map to more
than one proteomic location are difficult to attribute to a
specific gene (26). Therefore, we considered only proteotypic
tumor-specific changes with appropriate amino acid lengths
as verifiable variant peptides. We found that �3.5% of theo-
retical variant peptides mapped to more than one gene for
basal and luminal tumors, which were then removed from
subsequent analysis. An additional 32% of all possible variant
peptides were found to be outside of the peptide length
limitations for both tumor types. The proportion of variants
that are expressed at the mRNA level, however, cannot be

easily predicted and relies on variant calling from whole tran-
scriptome sequencing. Of the approximate 65% of peptides
meeting the requirements for MS/MS, a minority had evidence
for expression at the mRNA level (30.5% germline basal;
30.7% germline luminal; 10% somatic basal; 19% somatic
luminal) (Figs. 2A and 2B).

A total of 772 unique variant peptides were identified across
all 48 sample process replicates, 119 of which were found by
both labeled and label-free analysis, representing a total of
667 genomic SNVs (Supplemental Table 1). Peptide spectral
matching of iTRAQ and label-free global proteomics data
using tumor-specific databases identified a total of 610 basal
and 496 luminal variant peptides (including both somatic and
germline variants). Each variant peptide contains at least one
amino acid change resulting from a genomic SNV, with eight
of the 772 containing two amino acid substitutions, two pep-
tides with three substitutions, and one peptide with five sub-
stitutions (Supplemental Table 1). An overwhelming majority
of variants identified were represented in dbsnp (96.8%) and
neXtProt (76.8%) databases, leaving only 1.8% of identified
protein variants being described by neither database. Inter-
estingly, �20% of the variants identified by proteomics anal-
ysis lacked mRNA evidence based on RNA-Seq variant calling
(Fig. 2B). This can be explained, at least partially, by the
limitations associated with variant calling from RNA-Seq data
due to the inherent complexity of the transcriptome (27).

Of the 610 variant peptides in the basal tumor, 605 were
due to germline variants and only five were due to somatic
variants (Fig. 2C). Two of the five basal somatic variants were
identified by RNA-seq, one in the transcription factor GTF3C3
(ALGYMEGAAESYGK) and one in the nucleoprotein AHNAK2
(SFGVLAPGK) (Supplemental Table 1A). In the luminal tumor,
140 somatic and 356 germline variant peptides were identi-
fied, and more than 70% of the luminal somatic variants were
found at the mRNA level. The difference in somatic variant
expression between the basal and the luminal is considerable,
implicating differential translation or increased protein degra-
dation effects in the basal tumor. While �1/3 of the variant
peptides were only identified by only one spectral match
across all MS/MS runs, 20% had ten or more associated

TABLE I
Mass spectrometry metrics and methodology by center

iTRAQ
Label-Free

Resolution High Low

Center A B C D E
Instrument Q-Exactive Orbitrap Velos Orbitrap Velos Q-Exactive Orbitrap Velos
Fractions 25 25 24 24 15
Replicates 7 6 5 2 28
Gradient (min) 110 90 100 240 80
Total peptides 143,790 75,440 81,888 49,351 38,437
SNV peptides 642 267 274 79 72

Proteome analysis of basal and luminal PDX tumors was completed across five centers (A-E) using Thermo Fisher Q-Exactive or Orbitrap
Velos instrumentation. The number of fractions, LC-MS/MS gradient length, MS/MS model, number of PDX sample process replicates, and the
average number unique total, single nucleotide variant (SNV) and novel junction (NSJ) peptides are given for each center. All five centers used
bRPLC for LC-MS/MS separation.
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peptide spectral matches (PSMs) indicating consistently ob-
servable expression levels (Fig. 2C, Supplemental Table 1).
Additionally, comparison of the proteomic variants with pre-
dicted SNVs in 105 of the breast The Cancer Genome Atlas
(TCGA) tumors chosen for analysis by CPTAC found that
89% of the same genomic variants were present at the DNA
level in at least one of the human breast tumors (Supple-
mental Table 1).

We identified a subset of highly confident somatic variant
peptides that had more than ten peptide spectral matches
identified in at least one process replicate, associated RNA
expression, and evidence for expression in the associated pro-
tein (100� PSM along the protein) (Table II). Fifteen variants
were identified as tumor specific (somatic only) with high con-
fidence, including variants in Keratin19 (ENSP00000408759:
A60G), the mannose-6 phosphate receptor-binding protein
Perilipin-3 (ENSP00000465596: V275A), and the interferon
regulatory factor binding protein IRF2BP2 (ENSP00000355569:
V275A) (Table II).

In order to determine the number of sample process
replicates that are required to identify the maximum number
of translated variants, we completed a titration analysis
using 18 global iTRAQ and 28 label-free low-resolution
MS/MS experiments. We demonstrated that additional MS
analysis would likely result in further variant peptide identi-
fication (Figs. 3A and 3B). The number of total peptides
identified in these replicates varied between 19,720 to
125,912 for iTRAQ labeled and 10,506 to 33,091 for label-
free MS/MS, and the identification of variant peptides cor-
related to the total number of total peptides identified in
each replicate (iTRAQ: r2 � 0.665; label free: r2 � 0.745).
Despite this correlation, even process replicates with the
highest peptide identifications identified less than 40% of
the total unique variant peptides observed. (Supplemental
Figs. 7A and 7B).

Novel Junction Peptide Identification—In addition to amino
acid changes resulting from SNVs, alternative splicing and
novel expression have been shown to effect tumor growth
and disease progression (28). Intron/exon boundaries deter-
mined by RNA-Seq analysis were used to identify unanno-
tated alternative splicing events (matching to two known ex-
ons Fig. 1B), partially novel splicing (matching to only one
known exon Figs. 1C-1E), and completely novel splicing
(matching to no known exons Figs. 1F and 1G) occurring in
basal and luminal PDX tumors. The number of MS-verifiable
peptides, being both the appropriate length and gene spe-
cific, was identified to determine the full proteomic potential
due to novel splice junction (NSJ) peptides. Two percent of
unannotated alternative splicing peptides, 1.3% of partially
novel splicing peptides, and less than 0.01% of completely
novel peptides were removed from the analysis due to their
mapping to other known genes. An additional �24% of novel
junction peptides were found to be outside of the MS peptide
length limitations (Fig. 4A). Based on this analysis, we pre-
dicted a total of 22,187 and 20,442 unannotated alternative
splicing peptides, 217,715 and 180,100 partially novel junc-
tion peptides, and 238,891 and 164,273 completely novel
peptides to be verifiable by MS for luminal and basal, respec-
tively (Fig. 4A). Using these custom databases for spectral
matching, we were able to identify less than 0.05% of the
novel junction peptides for both basal and luminal tumors
(Fig. 4B).

We included all RNA-Seq junction predictions as input for
protein database creation, without taking into account the
number of reads supporting each junction. We used this
liberal inclusion to create the most complete database with
the available MPS data, containing all possible proteomic
changes, with the idea that the proteomic data can be used to
filter through transcriptional false positives. It is likely, how-
ever, that junctions confidently identified by proteomics anal-

TABLE II
Highly confident SNV peptides

Variant peptides identified by MS which were found to be somatic, with 10 or more peptide spectral matches (PSMs), variant expression at
the RNA level, and evidence for protein expression in the associated gene (100� PSMs across the gene). Includes associated gene name,
chromosome, genomic start and end, genomic variant location, Ensembl protein identifier, original and variant amino acids, and the method
it was identified in (iTRAQ, Label Free Low Resolution (LF-LR) or Label Free High Resolution (LF-HR)). All highly confident variants were found
to be somatic in the luminal tumor only.
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ysis will have more supporting reads. We therefore consid-
ered the number of junction reads supporting these peptides
postprocessing and found that novel junctions with MS iden-
tifications had significantly more RNA sequencing reads (me-
dian reads basal � 11, luminal � 6) compared with all junc-
tions in the protein database (median reads basal � 2, p �

1.8e-4; luminal � 2, p � 2.898e-5). Upstream filtering of
junction data containing five or more supporting reads dras-
tically reduced our predicted novel junction peptide number
to 76,053 basal and 91,609 luminal peptides, and �50% of
novel junction peptides identified by MS/MS met this criteria
(80 of the 129 basal and 68 of the 147 luminal peptides) (Fig.
4B). The ratio of peptides identified to peptides predicted was
similar between each of the three junction classes (Supple-
mental Fig. 8).

A total of 86 unique novel splice junction (NSJ) peptides
were identified in by least one sample process replicate. Of
the 66 NSJ peptides identified in basal tumors, eight sup-
ported unannotated alternative splicing, 32 indicated splicing
of a known exon with a novel coding region, and 26 demon-
strated the splicing of two novel exons. Similarly, seven pep-
tides supporting splicing of two known exons, 34 with one
known exon, and 26 completely novel exon splicing events
were identified in luminal tumors. Of these, �50% of the NSJ
peptides were identified in both basal and luminal tumors
(Supplemental Table 2). Approximately half of novel junction
peptides were supported by only one peptide spectral match
by only one process replicate (Fig. 4C).

We identified 16 novel junction peptides we considered to
be highly confident, having at least five peptide spectral

FIG. 3. Titration analysis of SNV and novel junction peptide discovery. Titration to determine the number of tandem MS process
replicates needed to identify all variant peptides for iTRAQ (A) and label free (B) and novel junction peptides for iTRAQ (C) and label free (D)
MS/MS. iTRAQ center A corresponds to process replicates 2, 3, 8, 10, 11, 13, and 14; center B replicates 4, 6, 9, 15, 16 and 18; and center
C replicates 1, 5, 7, 12, and 17. Only label-free analysis from center E was used in this analysis (B, D). Basal and luminal tumor peptide
identifications were pooled for titration analysis. Total list of SNV and novel junction peptides are included in Supplemental Tables 1–2.
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matches, more than five supporting RNA read, and evidence
for protein expression in the associated gene (�50 PSMs)
(Table III). In a few cases, NSJ peptide appeared to be present
in both the basal and the luminal tumor, i.e. iTRAQ reporter
ions were observed for both samples and RNA-Seq evidence
existed for both samples. In these cases, the sample is listed
as both basal and luminal, but sometimes the identification
from label-free analysis was able to determine the sample of
origin. The peptide with the most evidence (highest PSM
count) was found for a novel coding region near BHMT2 in
luminal tumors (Supplemental Table 2).

We completed similar titration analysis shown for the vari-
ant peptides to find the number of unique novel peptides
cumulatively identified with each process replicate. As seen
with the variant data, spectra from all replicates were required
to attain the complete list of junction peptides in both iTRAQ

and label-free analysis (Figs. 3C and 3D). The novel peptide
identification was similarly correlated with total peptides iden-
tified than that seen with the variant peptide identification,
with an R-squared value of 0.561 for iTRAQ and 0.385 for
label-free tandem MS. Our results establish that the extent of
novel and variant peptide identification is highly dependent on
the depth of proteomic analysis, and advancements in MS
sensitivity will result in more comprehensive variant peptide
identification. To better understand this continued rise in SNV
and NSJ peptides with increasing process replicate runs, we
plotted a titration for reference peptide identification for
iTRAQ and label free MS/MS (Supplemental Fig. 9). This anal-
ysis found a similar increase in reference peptide identification
with each successive iTRAQ process replicate, though the
label-free curve leveled out after �12 replicate MS/MS runs.
This indicates that increasing the number of process repli-

FIG. 4. Novel peptide expression in basal and luminal tumors. (A) Predicted proteomic change based on novel junction peptides. Gray
bars indicates variant tryptic peptides with peptides with lengths �6 or �30 and orange/purple/green bars show the number of unique peptides
which are verifiable by MS (B) Proportion of predicted junctions based on RNA sequencing (all junctions, purple; junctions 5� reads, blue) that
were identified by MS/MS proteomics for luminal and basal breast tumors (C) Total basal and luminal junction peptides identified. Identification
by iTRAQ, label-free MS/MS, or both is indicated by stacked bar color.
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cates run, particularly using different platforms and method-
ologies, can identify a wider range of novel peptides.

Although splicing and variants were considered simultane-
ously in our tumor-specific databases, no peptides containing
both a novel junction and SNV were identified from our anal-
ysis. We also used QUILTS to incorporate novel peptides from
a six-frame translation of 38 gene fusion calls, 13 in basal and
25 in luminal. A total of 954 luminal fusion peptides and 483
basal fusion peptides were included in the protein sequence
search database, but no positive identifications were found
using our proteomics analysis. We expect this is, in part, a
probabilistic issue, with relatively few potential fusion proteins
represented in the protein sequence database. Although no
fusion proteins were identified, of the 40 fusion gene junctions
found within a known gene boundary, 26 had some evidence
of protein expression (PSM�0 along the protein) (Supplemen-
tal Table 3).

DISCUSSION

The field of proteogenomics has seen considerable growth
in the last five years, requiring a focus on the integration of
genomics and proteomics through peptide mapping and the
use of sequencing data to attain a comprehensive view of the
proteome. Tools that utilize MPS data to better annotate and
identify proteins are essential for broad protein identification.
Ideally, integration of sequencing and proteomic analysis will
vastly improve our understanding of complex biological sys-
tems, in that more comprehensive and diverse data from the
same system can provide a clearer view of its biological
landscape. Additionally, integrating multiple datasets can
supplement the limitations associated with each method. For
example, proteomics can be used to better annotate the
protein coding regions of the genome (3, 8–10); DNA se-
quencing can predict protein coding variants in MS/MS (4);
and RNA-Seq transcriptomics can supplement MS proteomic
coverage (5, 6, 29).

This study demonstrates the current advantages and limi-
tations of proteogenomic integration for interpreting cancer
biology, specifically in the detection of novel protein isoforms.
We determined the capacity of current MS proteomic meth-
ods for variant and novel peptide identification in a sample
that has undergone both extensive proteomic (48 global
MS/MS sample process replicates) and DNA/RNA MPS anal-
ysis. Though the ability to detect more than 700 peptides that
confirm the expression of single nucleotide variations and 86
novel splicing events is notable, no one MS replicate was able
to recover more than 40% of the full list of observable pep-
tides, regardless of the instrumentation or methodology used.
Further, titration curves for both variant and junction peptide
analysis suggest that increased experimental process repli-
cates would continue to increase the number of captured
novel peptides (Fig. 3).

Although the sensitivity of MS-based proteomics has im-
proved dramatically, the limited dynamic range of the analysis
is obviously still an issue. For example, variant peptides of
established breast cancer genes such as PIK3CA or TP53
were not detected in this study. Since peptide size and
physiochemical properties have large effects on ionization
and fragmentation (30), i.e. because some peptides are well
suited for MS analysis while others are not, some issues with
low protein coverage are currently unavoidable using tandem
MS approaches. In addition, the overall dynamic range of the
analysis is several orders of magnitude lower than the range
of protein concentrations, even when extensive separation of
peptides is performed. This is due to a low MS dynamic range,
being only four orders of magnitude for a given measurement,
and a known bottleneck in instrument speed (31). Although
greater fractionation may partially resolve the issue, this ap-
proach is limited by sample quantity. Advancements in MS
protein identification sensitivity must be made, either through
improvements in sample preparation, instrumentation sensi-

TABLE III
Highly confident novel junction peptides

Novel junction peptides identified by MS which were found to have more than 5 PSMs across iTRAQ and label free analysis, 5 or more RNA
reads, and evidence for protein expression in the associated gene (50� PSMs across the gene). Includes the number of known exons involved
in splicing, peptide spectral matches, sample in which the peptide was identified, gene or the closest gene on the same strand, junction
location, and the method it was identified in (iTRAQ, Label Free Low Resolution (LF-LR), or Label Free High Resolution (LF-HR)).

Sensitivity Analysis of Proteogenomic Mapping

Molecular & Cellular Proteomics 15.3 1069

http://www.mcponline.org/cgi/content/full/M115.056226/DC1
http://www.mcponline.org/cgi/content/full/M115.056226/DC1


tivity and speed, or identification algorithms, if we are to
ultimately achieve complete proteomic landscape.

The low recovery between predicted novel junction pep-
tides and those identified in the proteomics data is particularly
striking (Fig. 4B), and similar levels of discovery have been
reported in other mammalian systems (5). This supports the
notion that there is a substantial level of noise in the transcrip-
tome, i.e. many transcripts never result in stable proteins.
Thus, proteomics becomes an essential technology in validat-
ing novel protein isoforms and splice sites. This result also
points to the high quality of the human genomic annotation,
with minimal novel exon discoveries despite the great depth in
sequencing and proteomics. Further, the overlap in novel
junction peptides identified in the luminal and basal tumors
(Supplemental Table 2) indicates that these peptides may
correlate to either “normal” exon structure or, instead, may be
attributed to a more cancer-specific splicing activity.

This study also demonstrates the current advantages and
limitations in DNA/RNA MPS analysis. A portion of the pep-
tides spanning novel junctions were only supported by a one
or a few RNA-Seq but had strong MS peptide evidence.
Similarly, many variants had only low quality score from WGS
or did not have supporting RNA-Seq evidence but had strong
MS evidence. This makes proteomics the method of choice
for determining which variants will be incorporated into stable
proteins or cause protein misfolding and degradation and in
the search for drivers of cancer.

The paucity of translated somatic variants in the basal-like
sample in comparison to the luminal tumor should be further
investigated in larger datasets. Translational controls and
degradation mechanisms may in play to restrict the repertoire
of mutant genes that are translated, and these maybe another
source of inter-tumor heterogeneity.

CONCLUSIONS

Proteomics is essential in validating genomic changes, in-
cluding SNVs and novel splicing to assess the degree to
which these genomic alterations are translated and therefore
biologically active. Although peptide coverage is restricted by
current technologies, with only 10% coverage of variant pep-
tide sequence even with multiple fractions and process rep-
licates, our ability to validate genomic variation in cancer
using proteomics is still substantial. This low variant peptide
coverage may occur for several reasons. Tryptic digestion is
clearly one limitation, and the use of additional enzymes and
fractionation approaches are under investigation. The low
rates of peptide detection may not just be a sensitivity issue
but reflect biological effects. For example, the very low de-
tection rates for novel splicing events may reflect the fact that
many are not efficiently translated or quickly degraded. Sim-
ilarly, lack of peptide expression for some SNV may be due to
somatic-mutation-driven translational effects or protein insta-
bility/degradation. The application of proteogenomic integra-
tion methods to larger datasets and improvements in peptide

identification and MS/MS sensitivity will help clarify these
issues in the future.
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