79 research outputs found

    Lane Line Detection and Object Scene Segmentation Using Otsu Thresholding and the Fast Hough Transform for Intelligent Vehicles in Complex Road Conditions

    Get PDF
    An Otsu-threshold- and Canny-edge-detection-based fast Hough transform (FHT) approach to lane detection was proposed to improve the accuracy of lane detection for autonomous vehicle driving. During the last two decades, autonomous vehicles have become very popular, and it is constructive to avoid traffic accidents due to human mistakes. The new generation needs automatic vehicle intelligence. One of the essential functions of a cutting-edge automobile system is lane detection. This study recommended the idea of lane detection through improved (extended) Canny edge detection using a fast Hough transform. The Gaussian blur filter was used to smooth out the image and reduce noise, which could help to improve the edge detection accuracy. An edge detection operator known as the Sobel operator calculated the gradient of the image intensity to identify edges in an image using a convolutional kernel. These techniques were applied in the initial lane detection module to enhance the characteristics of the road lanes, making it easier to detect them in the image. The Hough transform was then used to identify the routes based on the mathematical relationship between the lanes and the vehicle. It did this by converting the image into a polar coordinate system and looking for lines within a specific range of contrasting points. This allowed the algorithm to distinguish between the lanes and other features in the image. After this, the Hough transform was used for lane detection, making it possible to distinguish between left and right lane marking detection extraction; the region of interest (ROI) must be extracted for traditional approaches to work effectively and easily. The proposed methodology was tested on several image sequences. The least-squares fitting in this region was then used to track the lane. The proposed system demonstrated high lane detection in experiments, demonstrating that the identification method performed well regarding reasoning speed and identification accuracy, which considered both accuracy and real-time processing and could satisfy the requirements of lane recognition for lightweight automatic driving systems

    Helsinki by nature : The Nature Step to Respiratory Health

    Get PDF
    Background: The Nature Step to Respiratory Health was the overarching theme of the 12th General Meeting of the Global Alliance against Chronic Respiratory Diseases (GARD) in Helsinki, August 2018. New approaches are needed to improve respiratory health and reduce premature mortality of chronic diseases by 30% till 2030 (UN Sustainable Development Goals, SDGs). Planetary health is defined as the health of human civilization and the state of the natural systems on which it depends. Planetary health and human health are interconnected, and both need to be considered by individuals and governments while addressing several SDGs. Results: The concept of the Nature Step has evolved from innovative research indicating, how changed lifestyle in urban surroundings reduces contact with biodiverse environments, impoverishes microbiota, affects immune regulation and increases risk of NCDs. The Nature Step calls for strengthening connections to nature. Physical activity in natural environments should be promoted, use of fresh vegetables, fruits and water increased, and consumption of sugary drinks, tobacco and alcohol restricted. Nature relatedness should be part of everyday life and especially emphasized in the care of children and the elderly. Taking "nature" to modern cities in a controlled way is possible but a challenge for urban planning, nature conservation, housing, traffic arrangements, energy production, and importantly for supplying and distributing food. Actions against the well-known respiratory risk factors, air pollution and smoking, should be taken simultaneously. Conclusions: In Finland and elsewhere in Europe, successful programmes have been implemented to reduce the burden of respiratory disorders and other NCDs. Unhealthy behaviour can be changed by well-coordinated actions involving all stakeholders. The growing public health concern caused by NCDs in urban surroundings cannot be solved by health care alone; a multidisciplinary approach is mandatory.peerReviewe

    A Novel Approach for Classifying Transient Phenomena in Power Transformers

    No full text

    Effects of stenosis and aneurysm on blood flow in stenotic-aneurysmal artery

    No full text
    Blood is indeed a suspension of the different type of cells along with shear thinning, yield stress and viscoelastic characteristics, which can be expressed by Newtonian and a lot of non-Newtonian models. Choosing Newtonian fluid as a sample, an unsteady solver for Newtonian fluid is constructed to determine the transient flow of blood in the obscure region. In this probe, the computational unsteady flow of blood in artery with aneurysm and symmetric stenosis has been considered, which is novelty of current research. The results of this investigation can be applied to detect stenotic-aneurysmal diseases and enhance knowledge of the stenotic-aneurysmal artery, which may increase the understanding of medical science. The blood artery is modeled as a circular tube having a 0.3-m radius and a 2-m length along the horizontal axis. The velocity of blood is taken at 0.12 ms−1 so that the geometry satisfies the characteristics of the blood vessel. The governing mass and momentum equations are then solved by finite difference technique of discretization. In this research, important variations in blood pressure and velocity at stenosis and aneurysms in the artery are found. The significant influences on blood flow of the stenotic-aneurysmal artery for pressure and velocity profiles of blood are displayed graphically for the Newtonian model

    The Influence of Aligned MHD on Engine Oil-Based Casson Nanofluid with Carbon Nanotubes (Single and Multi-Wall) Passing through a Shrinking Sheet with Thermal Radiation and Wall Mass Exchange

    No full text
    The optimization of heating or cooling during an industrial system may result in power savings, reduced processing time, enhanced thermal efficiency, and increased equipment operating lifespan. The advancement of high-efficiency thermal systems for heat and mass transport improvement has become increasingly popular in recent years. The analysis of aligned magnetohydrodynamics (MHD) on engine oil-based Casson nanofluid with carbon nanotubes (single and multi-wall) passing a shrinking sheet following the thermal radiation and wall mass transport phenomena is carried out in this aspect. The dynamic model is utilized to reduce difficult ordinary differential equations into nondimensional forms, which are then analytically assessed. To study the repercussions of a physical parameter on the velocity field, skin friction at the wall, the stream pattern, the temperature distribution, isotherm, and the local Nusselt, numeric data and visualizations are generated. When the value of ϕ increases, the velocity field decelerates, and the velocity pattern of multi-walled CNTs drops considerably when compared to single-walled CNTs. The local Nusselt number is a decreasing function of N and ϕ and the opposite trend is shown for Pr. The local Nusselt number is a decreasing function of N and ϕ and the opposite trend is shown for Pr. The single-walled CNTs have a higher degradation rate as compared to multi-walled CNTs. It is found that higher temperature distribution occurs in the case of multi-walled CNT-based fluid as compared to single-walled CNT-based fluid

    Flow Characteristics of Heat and Mass for Nanofluid under Different Operating Temperatures over Wedge and Plate

    No full text
    Background and Purpose: Nanofluids are a new class of heat transfer fluids that are used for different heat transfer applications. The transport characteristics of these fluids not only depend upon flow conditions but also strongly depend on operating temperature. In respect of these facts, the properties of these fluids are modified to measure the temperature effects and used in the governing equations to see the heat and mass flow behavior. Design of Model: Consider the nanofluids which are synthesized by dispersing metallic oxides (SiO2, Al2O3), carbon nanostructures (PEG-TGr, PEG-GnP), and nanoparticles in deionized water (DIW), with (0.025–0.1%) particle concentration over (30–50 °C) temperature range. The thermophysical properties of these fluids are modeled theoretically with the help of experimental data as a function of a temperature and volume fraction. These models are further used in transport equations for fluid flow over both wedge and plate. To get the solution, the equations are simplified in the shape of ordinary differential equations by applying the boundary layer and similarity transformations and then solved by the RK method. Results: The solution of the governing equation is found in the form of velocity and temperature expressions for both geometries and displayed graphically for discussion. Moreover, momentum and thermal boundary layer thicknesses, displacement, momentum thicknesses, the coefficient of skin friction, and Nusselt number are calculated numerically in tabular form. Finding: The maximum reduction and enhancement in velocity and temperature profile is found in the case of flow over the plate as compared to the wedge. The boundary layer parameters are increased in the case of flow over the plate than the wedge

    Structural and Electronic Properties of SnO Downscaled to Monolayer

    No full text
    Two-dimensional (2D) SnO is a p-type semiconductor that has received research and industrial attention for device-grade applications due to its bipolar conductivity and transparent semiconductor nature. The first-principles investigations based on the generalized gradient approximation (GGA) level of theory often failed to accurately model its structure due to interlayer Van der Waals interactions. This study is carried out to calculate structural and electronic properties of bulk and layered structures of SnO using dispersion correction scheme DFT+D3 with GGA-PBE to deal with the interactions which revealed good agreement of the results with reported data. The material in three-dimensional bulk happened to be an indirect gap semiconductor with a band gap of 0.6 eV which is increased to 2.85 eV for a two-dimensional monolayer structure. The detailed analysis of the properties demonstrated that the SnO monolayer is a promising candidate for future optoelectronics and spintronics devices, especially thin film transistors

    Convective Heat and Mass Transport in Casson Fluid Flow in Curved Corrugated Cavity with Inclined Magnetic Field

    No full text
    Convection in fluids produced by temperature and solute concentration differences is known as thermosolutal convection. It has valuable utilization in wide industrial and technological procedures such as electronic cooling, cleaning, and dying processes, oxidation of surface materials, storage components, heat exchangers, and thermal storage systems. In view of such prominent physical significance, focus is made to explicate double (thermal and solutal)-diffusive transport in viscoelastic fluid characterized by the Casson model enclosed in a curved enclosure with corrugations. An incliningly directed magnetic field is employed to the flow domain. A uniformly thermalized and concentrated circular cylinder is installed at the center of the enclosure to measure transport changes. Dimensionally balanced governing equations are formulated in 2D, representing governed phenomenon. Finite element-based open-sourced software known as COMSOL is utilized. The domain of the problem is distributed in the form of triangular and quadrilateral elements. Transport distributions are interpolated by linear and quadratic polynomials. The attained non-linear system is solved by a less time and computation cost consuming package known as PARDISO. Convergence tests for grid generation and validation of results are executed to assure credibility of work. The influence of involved physical parameters on concerned fields are revealed in graphical and tabular manner. Additionally, heat and mass fluxes, along with, kinetic energy variation are also evaluated
    • …
    corecore