11 research outputs found

    Global gene expression analysis in time series following N-acetyl L-cysteine induced epithelial differentiation of human normal and cancer cells in vitro

    Get PDF
    BACKGROUND: Cancer prevention trials using different types of antioxidant supplements have been carried out at several occasions and one of the investigated compounds has been the antioxidant N-acetyl-L-cysteine (NAC). Studies at the cellular level have previously demonstrated that a single supplementation of NAC induces a ten-fold more rapid differentiation in normal primary human keratinocytes as well as a reversion of a colon carcinoma cell line from neoplastic proliferation to apical-basolateral differentiation [1]. The investigated cells showed an early change in the organization of the cytoskeleton, several newly established adherens junctions with E-cadherin/β-catenin complexes and increased focal adhesions, all features characterizing the differentiation process. METHODS: In order to investigate the molecular mechanisms underlying the proliferation arrest and accelerated differentiation induced by NAC treatment of NHEK and Caco-2 cells in vitro, we performed global gene expression analysis of NAC treated cells in a time series (1, 12 and 24 hours post NAC treatment) using the Affymetrix GeneChip™ Human Genome U95Av2 chip, which contains approximately 12,000 previously characterized sequences. The treated samples were compared to the corresponding untreated culture at the same time point. RESULTS: Microarray data analysis revealed an increasing number of differentially expressed transcripts over time upon NAC treatment. The early response (1 hour) was transient, while a constitutive trend was commonly found among genes differentially regulated at later time points (12 and 24 hours). Connections to the induction of differentiation and inhibition of growth were identified for a majority of up- and down-regulated genes. All of the observed transcriptional changes, except for seven genes, were unique to either cell line. Only one gene, ID-1, was mutually regulated at 1 hour post treatment and might represent a common mediator of early NAC action. The detection of several genes that previously have been identified as stimulated or repressed during the differentiation of NHEK and Caco-2 provided validation of results. In addition, real-time kinetic PCR analysis of selected genes also verified the differential regulation as identified by the microarray platform. CONCLUSION: NAC induces a limited and transient early response followed by a more consistent and extensively different expression at later time points in both the normal and cancer cell lines investigated. The responses are largely related to inhibition of proliferation and stimulation of differentiation in both cell types but are almost completely lineage specific. ID-1 is indicated as an early mediator of NAC action

    Cancer Stem Cells and Side Population Cells in Breast Cancer and Metastasis

    Get PDF
    In breast cancer it is never the primary tumour that is fatal; instead it is the development of metastatic disease which is the major cause of cancer related mortality. There is accumulating evidence that suggests that Cancer Stem Cells (CSC) may play a role in breast cancer development and progression. Breast cancer stem cell populations, including side population cells (SP), have been shown to be primitive stem cell-like populations, being long-lived, self-renewing and highly proliferative. SP cells are identified using dual wavelength flow cytometry combined with Hoechst 33342 dye efflux, this ability is due to expression of one or more members of the ABC transporter family. They have increased resistance to chemotherapeutic agents and apoptotic stimuli and have increased migratory potential above that of the bulk tumour cells making them strong candidates for the metastatic spread of breast cancer. Treatment of nearly all cancers usually involves one first-line agent known to be a substrate of an ABC transporter thereby increasing the risk of developing drug resistant tumours. At present there is no marker available to identify SP cells using immunohistochemistry on breast cancer patient samples. If SP cells do play a role in breast cancer progression/Metastatic Breast Cancer (MBC), combining chemotherapy with ABC inhibitors may be able to destroy both the cells making up the bulk tumour and the cancer stem cell population thus preventing the risk of drug resistant disease, recurrence or metastasis

    Transgenic Mice with Pancellular Enhanced Green Fluorescent Protein Expression in Primitive Hematopoietic Cells and All Blood Cell Progeny

    No full text
    Transgenic mice homogeneously expressing enhanced green fluorescence protein (EGFP) in primitive hematopoietic cells and all blood cell progeny, including erythrocytes and platelets, have not been reported. Given previous data indicating H2Kb promoter activity in murine hematopoietic stem cells (HSCs), bone marrow (BM), and lymphocytes, an H2Kb enhancer/promoter EGFP construct was used to generate transgenic mice. These mice demonstrated pancellular EGFP expression in both primitive BM Sca-1+Lin-Kit+ cells and side population (SP) cells. Additionally, all peripheral blood leukocytes subsets, erythrocytes, and platelets uniformly expressed EGFP strongly. Competitive BM transplantation assays established that transgenic H2Kb-EGFP HSCs had activity equivalent to wildtype HSCs in their ability to reconstitute hematopoiesis in lethally irradiated mice. In addition, immunohistochemistry revealed EGFP transgene expression in all tissues examined. This transgenic strain should be a useful reagent for both murine hematopoiesis studies and functional studies of specific cell types from particular tissues
    corecore