85 research outputs found

    Functional studies of p.R132C, p.R149C, p.M283V, p.E431K, and a novel c.652-2A>G mutations of the CYP21A2 gene

    Get PDF
    Congenital adrenal hyperplasia (CAH) due to 21-hydroxylase deficiency is the most frequent inborn error of metabolism and accounts for 90–95% of CAH cases. In the present work, we analyzed the functional consequence of four novel previously reported point CYP21A2 mutations -p.R132C, p.R149C, p.M283V, p.E431K- found in Argentinean 21-hydroxylase deficient patients. In addition, we report an acceptor splice site novel point mutation, c.652-2A.G, found in a classical patient in compound heterozygosity with the rare p.R483Q mutation. We performed bioinformatic and functional assays to evaluate the biological implication of the novel mutation. Our analyses revealed that the residual enzymatic activity of the isolated mutants coding for CYP21A2 aminoacidic substitutions was reduced to a lesser than 50% of the wild type with both progesterone and 17-OH progesterone as substrates. Accordingly, all the variants would predict mild non-classical alleles. In one non-classical patient, the p.E431K mutation was found in cis with the p.D322G one. The highest decrease in enzyme activity was obtained when both mutations were assayed in the same construction, with a residual activity most likely related to the simple virilizing form of the disease. For the c.652-2A.G mutation, bioinformatic tools predicted the putative use of two different cryptic splicing sites. Nevertheless, functional analyses revealed the use of only one cryptic splice acceptor site located within exon 6, leading to the appearance of an mRNA with a 16 nt deletion. A severe allele is strongly suggested due to the presence of a premature stop codon in the protein only 12 nt downstream.Fil: Taboas, Melisa Ivana. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Biología y Medicina Experimental. Fundación de Instituto de Biología y Medicina Experimental. Instituto de Biología y Medicina Experimental; Argentina. Dirección Nacional de Instituto de Investigación. Administración Nacional de Laboratorio e Instituto de Salud "Dr. C. G. Malbrán"; ArgentinaFil: Gómez Acuña, Luciana Inés. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Fisiología, Biología Molecular y Neurociencias. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Fisiología, Biología Molecular y Neurociencias; ArgentinaFil: Scaia, María Florencia. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Biodiversidad y Biología Experimental; ArgentinaFil: Bruque, Carlos David. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Biología y Medicina Experimental. Fundación de Instituto de Biología y Medicina Experimental. Instituto de Biología y Medicina Experimental; Argentina. Dirección Nacional de Instituto de Investigación. Administración Nacional de Laboratorio e Instituto de Salud "Dr. C. G. Malbrán"; ArgentinaFil: Buzzalino, Noemí Delia. Dirección Nacional de Instituto de Investigación. Administración Nacional de Laboratorios e Institutos de Salud "Dr. Carlos G. Malbrán". Centro Nacional de Genética Médica; ArgentinaFil: Stivel, M.. Gobierno de la Ciudad Autonoma de Buenos Aires. Hospital General de Agudos Carlos Durand.; ArgentinaFil: Ceballos, Nora Raquel. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Biodiversidad y Biología Experimental; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Dain, Liliana Beatriz. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Biología y Medicina Experimental. Fundación de Instituto de Biología y Medicina Experimental. Instituto de Biología y Medicina Experimental; Argentina. Dirección Nacional de Instituto de Investigación. Administración Nacional de Laboratorio e Instituto de Salud "Dr. C. G. Malbrán"; Argentin

    Notochordal cell conditioned medium stimulates mesenchymal stem cell differentiation toward a young nucleus pulposus phenotype

    Get PDF
    Introduction\ud Mesenchymal stem cells (MSCs) offer promise for intervertebral disc (IVD) repair and regeneration because they are easily isolated and expanded, and can differentiate into several mesenchymal tissues. Notochordal (NC) cells contribute to IVD development, incorporate into the nucleus pulposus (NP), and stimulate mature disc cells. However, there have been no studies investigating the effects of NC cells on adult stem cell differentiation. The premise of this study is that IVD regeneration is more similar to IVD development than to IVD maintenance, and we hypothesize that soluble factors from NC cells differentiate MSCs to a phenotype characteristic of nucleus pulposus (NP) cells during development. The eventual clinical goal would be to isolate or chemically/recombinantly produce the active agent to induce the therapeutic effects, and to use it as either an injectable therapy for early intervention on disc disease, or in developing appropriately pre-differentiated MSC cells in a tissue engineered NP construct.\ud \ud Methods\ud Human MSCs from bone marrow were expanded and pelleted to form high-density cultures. MSC pellets were exposed to either control medium (CM), chondrogenic medium (CM with dexamethasone and transforming growth factor, (TGF)-β3) or notochordal cell conditioned medium (NCCM). NCCM was prepared from NC cells maintained in serum free medium for four days. After seven days culture, MSC pellets were analyzed for appearance, biochemical composition (glycosaminoglycans and DNA), and gene expression profile (sox-9, collagen types-II and III, laminin-β1 and TIMP1(tissue inhibitor of metalloproteinases-1)).\ud \ud Results\ud Significantly higher glycosaminoglycan accumulation was seen in NCCM treated pellets than in CM or TGFβ groups. With NCCM treatment, increased gene expression of collagen III, and a trend of increasing expression of laminin-β1 and decreased expression of sox-9 and collagen II relative to the TGFβ group was observed.\ud \ud Conclusions\ud Together, results suggest NCCM stimulates mesenchymal stem cell differentiation toward a potentially NP-like phenotype with some characteristics of the developing IVD

    Engineered Osteochondral Grafts Using Biphasic Composite Solid Free-Form Fabricated Scaffolds

    Full text link
    Tissue engineering has provided an alternative to traditional strategies to repair cartilage damaged by injury or degenerative disease. A successful strategy to engineer osteochondral tissue will mimic the natural contour of the articulating surface, achieve native mechanical properties and functional load-bearing ability, and lead to integration with host cartilage and underlying subchondral bone. Image-based design (IBD) and solid free-form (SFF) fabrication can be used to generate scaffolds that are load bearing and match articular geometry. The objective of this study was to utilize materials and biological factors in an integrated approach to regenerate a multitissue interface. Biphasic composite scaffolds manufactured by IBD and SFF fabrication were used to simultaneously generate bone and cartilage in discrete regions and provide for the development of a stable interface between cartilage and subchondral bone. Poly-L-lactic acid/hydroxyapatite composite scaffolds were differentially seeded with fibroblasts transduced with an adenovirus expressing bone morphogenetic protein 7 (BMP-7) in the ceramic phase and fully differentiated chondrocytes in the polymeric phase. After subcutaneous implantation into mice, the biphasic scaffolds promoted the simultaneous growth of bone, cartilage, and a mineralized interface tissue. Within the ceramic phase, the pockets of tissue generated included blood vessels, marrow stroma, and adipose tissue. This combination of IBD and SFF-fabricated biphasic scaffolds with gene and cell therapy is a promising approach to regenerate osteochondral defects.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/63145/1/ten.2004.10.1376.pd

    Skeletal homeostasis in tissue-engineered bone

    Full text link
    Tissue-engineering strategies to stimulate bone regeneration may offer an alternative approach to conventional orthopaedic and maxillofacial surgical therapies. Over the last decade, significant advances have been accomplished in developing biomimetic matrices, growth factors, cell transplantation and gene delivery therapeutics to support new bone growth. However, it is not known if tissue-engineered bone recapitulates the biology of normal skeletal tissue in response to physiologic cues. Here, we report that bone formed by the differentiation of transplanted murine bone marrow stromal cells (BMSCs) responds to a systemically delivered calciotropic hormone. Ectopic ossicles in mice exposed to catabolic doses of parathyroid hormone (PTH) had increased numbers of tartrate-resistant acid phosphatase (TRAP)-positive osteoclasts as compared to control mice. In contrast, treatment with anabolic doses of PTH promoted a marked increase in trabecular bone mass as analyzed by microcomputed tomography and histomorphometry. Our findings demonstrate that bone formed from transplanted BMSCs is responsive to normal physiologic signals, and can be augmented by the addition of a systemic anabolic agent. Because multiple and distinct ossicles can be generated in a single animal, this versatile system may be used to: (a) elucidate cellular/molecular mechanisms in bone regeneration; (b) study cell-to-cell interactions in the bone marrow microenvironment in health and disease; and (c) evaluate the efficacy of osteotropic agents that modulate bone turnover in vivo. © 2003 Orthopaedic Research Society. Published by Elsevier Science Ltd. All rights reserved.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/34920/1/1100210516_ftp.pd

    Childhood emotional trauma and cyberbullying perpetration among emerging adults: a multiple mediation model of the role of problematic social media use and psychopathology

    Get PDF
    Research suggests that a small minority of social media users experience problems as a result of their online use. The purpose of the present study was to examine the association of cyberbullying perpetration and problematic social media use with childhood emotional trauma, Cluster B (narcissistic, histrionic, antisocial, and borderline) personality traits, dissociative experiences (DEs), depression, and self-esteem in a nonclinical undergraduate sample. A total of 344 university students volunteered to complete a questionnaire that included measures on the aforementioned dimensions. Thirty-eight percent of the participants had emotional neglect and 27% had emotional abuse, while 44% of them demonstrated at least one cyberbullying perpetration behavior. Results indicated that cyberbullying perpetrators had higher scores on problematic social media use, dissociative experiences, Cluster B traits, depression and childhood emotional trauma, and lower on self-esteem. Path analysis demonstrated that, while adjusting for gender and age, childhood emotional trauma was directly and indirectly associated with cyberbullying perpetration via Cluster B traits. Moreover, depression and dissociation were directly associated with problematic social media use. The findings of this study emphasize the important direct role of childhood emotional trauma and pathological personality traits on cyberbullying perpetration

    3D-Printed Stationary Phases with Ordered Morphology: State of the Art and Future Development in Liquid Chromatography Chromatographia

    Get PDF

    Estudios Longitudinales Sobre el Trastorno de Personalidad Limítrofe: ¿Qué Nos Están Señalando?

    No full text
    Anterior a la década de los 1980s se mantenía una creencia general que postulaba que los pacientes con Trastornos de Personalidad Limítrofe (TPL) difícilmente se podrían recuperar de su diagnóstico clínico. Por lo tanto, por varias décadas reinó un pesimismo terapéutico respecto a un mejor pronóstico. Sin embargo, dichas opiniones no se basaban en estudios longitudinales. En los últimos 30 años ya han salido a relucir los resultados de varios estudios longitudinales, los cuales revelan que los Trastornos de Personalidad (TP) en general son mucho más maleables e inestables de lo que se suponía. Cuando se estudia el TPL de manera específica, tenemos que en seguimientos de 10 años, más de la mitad han mantenido una recuperación sostenida. Sin embargo, tal parece que algunos de los rasgos de personalidad son más recalcitrantes de cambio. En este artículo se realiza una revisión detallada de dichos hallazgos y se plantean recomendaciones sobre el manejo clínico de estos pacientes
    corecore