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Abstract
Stationary phases with precisely ordered morphology have the potential to drastically improve the performance of chromato-
graphic operations, both in the analytical and in the preparative/industrial fields. The recent wave of additive manufacturing, 
aka 3D printing, gives the unprecedented ability to fabricate such stationary phases and to experimentally prove the theoretical 
principles of ordered chromatographic beds. The manufacture of highly efficient chromatographic columns is becoming a 
reality as 3D printers become more affordable and accessible, and their resolution, speed, and material flexibility continue 
to grow. This brings fresh ideas to the design of chromatographic beds, moving away from stereotypical “packed” beds 
with spherical particles to bespoke monolithic structures to suit a range of specific applications. This review aims to cover 
the state of the art of ordered beds for liquid chromatography applications, drawing analogies between the well-established 
pillar-array columns in two dimensions to their three-dimensional counterparts. The potential use of 3D printing to create 
entirely new column formats and cartridge designs such as microchip columns will also be discussed. Finally, key opportuni-
ties and challenges which remain in the field of 3D-printed chromatography are summarised, with the hope that 3D printed 
chromatographic columns will soon become the standard.

Keywords 3D printing · Packed bed · Chromatography · Porous media · Packing homogeneity

Introduction

Packed beds are a critical component in most operations in 
the process industry, with applications including reaction 
engineering, e.g., catalysis and fermentations, and separa-
tion processes, e.g., absorption, adsorption, and distillation 
[1]. The pervasive nature of packed beds underscores the 
widespread implications of improvements in their design, 
fabrication methods, and process performance. Such con-
siderations are particularly important in the chromatogra-
phy arena, which is driven by the ongoing search for more 
efficient columns that can achieve separations at high speeds 
and high resolutions [2].

As predicted by Knox, improvements in HPLC efficiency 
and separation speed have been predominantly driven by 
decreasing particle size [3, 4]. However, with the passing 
of the 2-µm threshold in the past decade [5], researchers are 
quickly approaching the limit of applicable driving pressure 
and tolerable frictional heating [6], and research must be 
applied to find alternative methods to improve separation 
performance.

One major limitation lies in the slurry-packing methods 
universally employed to manufacture chromatographic col-
umns, as the resulting lack of precise control over particle 
shape, size, and position has a deleterious effect on sepa-
ration efficiency [7, 8]. Ordered, homogeneous beds have 
been proposed as a solution to drastically increase chroma-
tographic efficiency without affecting pressure drops and 
throughput [9, 10], and dramatic reductions of the height 
of a theoretical plate (HETP) have been reported in stud-
ies employing experiments and simulations [11–13]. Fol-
lowing this principle, the last decade saw the emergence 
of two-dimensional columns with perfectly ordered internal 
morphology [14]. These have been extensively fabricated 
and tested, experimentally demonstrating the theoretical 
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improvements associated with ordered stationary phases 
[15]. However, the manufacture of three-dimensional porous 
beds has been impeded by inherent structural strength and 
reproducibility issues. This has restricted research in three-
dimensional beds to a range of modelling studies, yielding 
encouraging results but with limited or no experimental 
validation [16, 17].

The recent explosion of additive manufacturing methods 
(AM, aka 3D printing) has opened a new paradigm for the 
microfabrication of precisely ordered three-dimensional 
packed beds. Its “layer-by-layer” production process ena-
bles the creation of difficult designs, including the complex 
network of channels, voids, and overhangs characteristic of 
chromatographic stationary phases [18]. 3D printing enables 
fine control over particle size, shape, position, alignment, 
and configuration, to create complex structures which were 
previously impossible to produce. This approach has been 
pioneered by Fee et al. with the printing of arrays of spheri-
cal particles as well as alternative configurations such as 
parallel channels [19]. 3D printing also presents the oppor-
tunity to fabricate ancillary column components such as 
column cartridges (including walls, flow distributors, and 
connecting fittings) with alternative formats, e.g., spiral or 
serpentine [20–22].

This review aims to cover the state of the art in ordered 
stationary phases for liquid chromatography. The discussion 
will initially revolve around findings from theory, experi-
ments, and modelling with respect to three main morpho-
logical traits that define a chromatographic bed, i.e., (i) bed 
homogeneity, (ii) particle shape, and (iii) bed configuration. 
The review will then progress to novel complex formats for 
chromatography cartridges enabled by the 3D printing tech-
nology. Finally, an overview of the potential opportunities 
and remaining challenges associated with AM methods will 
be presented.

This review intends to cover the potential benefits of 
3D-printing in conjunction with HPLC, and as such does 
not intend to discuss AM methods as these are already exten-
sively covered in other, more specific reviews [18, 23–26]. 
The reader is also directed towards a number of recent 
reviews on the current state of the art in liquid chromatog-
raphy [6, 27–29].

Factors Influencing the Performance 
of Porous Beds

Homogeneity

It has been posited by a number of researchers that the 
majority of the band broadening in a packed column is 
caused by bed inhomogeneity [3, 30]. For example, it is 
well known that the irregularities in the flow paths for 

the mobile phase are responsible for eddy diffusion [31]. 
John Knox hypothesised that the eddy diffusion term con-
tributes approximately one-half of the minimum reduced 
plate height, and therefore, the maximum efficiency of a 
packed bed can be at least doubled on an ideally homo-
geneous bed [32]. This implies that a separation carried 
out on a conventional randomly packed column could be 
equally achieved using a homogeneous column with much 
shorter bed height (less than half of its original length), 
with immediate advantages in terms of pressure drops and 
pumping requirements. On the other hand, a homogeneous 
column having the same size as its heterogeneous counter-
part will have a larger number of plates (at least double), 
hence enabling separations with higher resolutions (fac-
tor ≥ √2). There is a further connotation of John Knox’s 
postulation; as the minimal time needed to reach a desired 
separation resolution is proportional to the square of plate 
height, a fully homogeneous column would provide the 
same resolution in under a quarter of the time of its hetero-
geneous counterpart [30]. These considerations led Knox 
to recommend that column manufacturers focus on the 
homogeneity of their packings as opposed to only reducing 
particle size [33]. The importance of packing methods is 
highlighted in a recent work by Schweiger et al., showing 
that even standardised pre-packed columns can exhibit a 
column-to-column HETP deviation of around 15% [34].

Seminal works demonstrating the advantages of ordered 
stationary phases were carried out in two-dimensional sys-
tems as early as 1998, i.e., when high-precision etching 
allowed the creation of highly homogeneous arrays of pil-
lars [35, 36] (Fig. 1). Although 2D pillar arrays cannot 
directly mimic the interpore connectivity of a 3D system, 
Eghbali et al. noted that the plate-height models currently 
used make no assumptions regarding the dimensional-
ity of the system [15]. Accordingly, an understanding of 
packed-bed behaviour in two dimensions can offer impor-
tant insights in three-dimensional systems, e.g., by apply-
ing shape factors.

Following this approach, minimum reduced plate heights 
as low as 1 were reported for the first time by De Malsche 
et al. in 2007 on a largely homogeneous, 1-cm-long 2D pil-
lar array [30]. This group has carried out further work in 
this direction, exploring a range of variables such as size 
and shape of pillars [37, 38] (further discussed in “Particle 
Shape” section), bed and monolith porosities [13, 39], and 
strategies to introduce chromatographic functionality (e.g., 
electrochemical anodization [39], in situ deposition [40], or 
growth methods [41, 42]). Their experimental investigations 
report two-dimensional columns with reduced plate heights 
as low as 0.2 and separation impedance on the order of 50 
for non-retained analytes [27]. The exact homogeneity of 
their columns was consistently nominated as the primary 
reason for such elevated efficiency.
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The importance of bed homogeneity in pillar-array col-
umns was recognised as early as 2005 in a modelling study 
by Billen and colleagues [43]. Pillar arrays were consid-
ered, with increased degrees of heterogeneity in both the 
size and positioning of the cylindrical pillars, and the col-
umn efficiency in terms of plate height was estimated. The 
researchers noted that stationary-phase heterogeneity causes 
the formation of preferential flow paths, giving rise to a large 
increase in band broadening. This conclusion was further 
experimentally proven in a 2009 study by Eghbali et al. [15]. 
Van Deemter curves for pillar-array columns with different 
degrees of heterogeneity showed an increase of 209% and 
43% in the A and C terms, respectively, as column hetero-
geneity was amplified.

Two-dimensional pillar-array columns are produced in 
microchip formats [44], mainly due to limitations in the 
build size of the fabrication techniques employed, thus pre-
venting the production of upscaled columns that could be 
employed in the bioprocessing industry. Accordingly, inter-
est in these devices remains confined to the analytical sci-
ences, trending towards the creation of long (over 3 m) and 
very efficient (over 1-million plates) capillary columns [40].

Although far more homogeneous than any packed beds 
produced to date, the 2D pillar arrays are still subject to 
small imperfections due to sidewall effects [45], race track 
effects [46] and artefacts from the etching process [47].

The effects of inhomogeneities in three-dimensional 
columns were studied in detail after the advent of supe-
rior imaging and analytical techniques in the early 1990s. 
In a 1993 study, Schisla et al. studied a bundle of parallel 
capillaries with Gaussian distribution of diameters both 

experimentally and through simulations. It was demon-
strated that, for parallel capillaries, even 1% standard devi-
ation in the diameter can cause a tenfold increase in HETP 
[48]. Schisla’s polydispersity theory was further developed 
by Gzil et al. in 2003; using computer simulations, the 
researchers concluded that redistribution of the fluid flow 
at regular intervals could effectively eliminate the deleteri-
ous effect from non-uniform channels (Fig. 2) [49].

In an effort to interpret band broadening as a quanti-
tative function of bed heterogeneity, Schure and Maier 
simulated monodisperse packed beds and measured the 
loss of efficiency as defects were introduced by remov-
ing a certain fraction of particles from the bed [16]. It 
was found that removing just 6% of particles from a bed 
caused around a 33% decrease in column efficiency. The 
authors argue that the formation of preferential flow paths 
due to packing defects has a deleterious influence on col-
umn performance, and acknowledges that it is impossible 
to obtain a defect-free packing through use of the tradi-
tional slurry-packing methods. The group of Wirth et al. 
overcame this phenomenon, demonstrating experimen-
tally that submicrometer spherical silica particles tend to 
spontaneously self-assemble, which lead to the formation 
of highly ordered packings, even at the periphery of the 
capillary (Fig. 3) [50]. In addition, columns packed with 
sub-µm particles contain interstitial channels narrower 
than 100 nm, leading to slip flow (non-zero fluid veloc-
ity at the boundary with the particles) and thus narrower 
trans-column velocity distributions [51–53]. The increase 
in both packing order and flow homogeneity was thus 
associated with decreased band broadening and improved 

Fig. 1  SEM images of etched pillar arrays. a Published by He et al. 
in original 1998 proof-of-concept study, reprinted with permission 
from [35]. Copyright (1998) American Chemical Society. b Produced 

using Bosch etching process. Reprinted with permission from Billen 
and Desmet [10]
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chromatographic performance, with an impressive reduced 
plate height of 0.7 [50].

Schenker et al. developed a different method to determine 
and quantify microstructural heterogeneity through the use 
of the Voronoi tessellation [54]. This method deconstructs 
the bed volume into a number of three-dimensional cells, 
each defined by the location of a particle in the bed and 
the surrounding empty volume. The distribution of the vol-
umes of the Voronoi cells enables quantitative analysis of 
the packing morphology in terms of both local packing den-
sity and disorder at the same time (rather than considering 
these two aspects separately, e.g., through the use of bed 
porosity and velocity distribution, respectively). Khirevich 
et al. successfully employed the volume distribution of the 
Voronoi tessellation to accurately and quantitatively predict 
the observed eddy dispersion [55].

Column walls represent another source of bed inhomoge-
neity. During column packing, the particles endure intense 
friction near the wall and are partly crushed or otherwise 

broken [56–58]. The presence of the column walls also con-
strains the spatial distribution of the particles, resulting in 
additional non-uniformities in the radial direction [59, 60]. 
In particular, the particles close to the walls tend to create 
localised regions with higher porosity than the bed average, 
thus leading to the formation of preferential flow paths in 
these regions [61]. Numerical simulations demonstrated that 
wall effects increase axial dispersion, thus reducing separa-
tion quality [62]. This concept was reinforced by Reising 
et al. who used focused ion-beam scanning electron micros-
copy (FIB-SEM) to reconstruct a commercial analytical 
column in high resolution; radial structural heterogeneities 
were clearly observed, and simulations confirmed that fluid 
velocity, consequently, varied radially within the column 
[63]. Furthermore, the authors characterised the column as 
a number of radially resolved packing regimes; an assertion 
confirmed in a recent modelling study by Gritti [64]. The 
inherent radial heterogeneity of traditionally packed columns 
was further discussed by Bruns et al. and Aggarwal et al. 
who concluded that the causes of the observed trans-column 
heterogeneity are still speculative [65, 66].

Vervoort and colleagues approached this issue in 2D 
chromatography units, with the design of columns exhibit-
ing minimised wall effects. In particular, they attempted to 
achieve a uniform flow resistance across the entire column 
cross section by varying the size of the channels adjacent 
to the sidewalls [67]. While this approach is theoretically 
sound, it is extremely sensitive to variations in channel size, 
e.g., due to fabrication defects. A slightly different approach 
was proposed by Vangelooven et al. who embedded half-
pillars into the walls of a pillar-array column (Fig. 4). The 
researchers observed that the embedded particles had an 
increased flow resistance, and hence, the sidewall chan-
nels could be widened [61]. Although this solution is also 

Fig. 2  Schematic view of a 
conceptual parallel plate column 
which has been optimised using 
simulation to minimise Schisla’s 
polydispersity effect, printed 
with permission from Gzil et al. 
[49]

Fig. 3  SEM image of uniformly packed silica nanoparticles at capil-
lary edge. Reprinted with permission from [51]
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extremely sensitive to the precise placement of the wall-
embedded pillars and nearby channel dimensions, Op De 
Beeck et al. found that this sensitivity can be decreased 
through design of radially elongated pillars as the sidewall 
makes up a relatively smaller portion of the flow paths [30, 
40].

Particle-size distribution (PSD) is yet another obvi-
ous cause of column inhomogeneity, but its role and how 
it affects column efficiency is still open for debate. For 
example, Horváth and colleagues employed a mathematical 
framework to determine the HETP for columns with dif-
ferent PSDs and for different analytes, and clearly demon-
strated that wider size distributions cause higher bed hetero-
geneity and a decreased column performance [12]. On the 
other hand, Daneyko et al. employed the Lattice Boltzmann 
modelling method to simulate the hydrodynamic and chro-
matographic performance of columns packed with particles 
having realistic (experimentally derived) PSD [17]. Their 
results indicate that, while PSD generally affects the HETP, 
size distributions commonly encountered in commercial 
chromatography resins are small enough not to produce 
any noticeable influence on both hydrodynamic dispersion 
and permeability. Rather than PSD, they point at overall 
bed homogeneity as the most important parameter for high 
performance columns, i.e., the key role of the packing pro-
cess to obtain well-packed columns. Liekens et al. took an 
experimental approach to the PSD problem, and deliberately 
packed columns with particles having broad size distribu-
tions. Tests were carried out using a commercial batch of 

monodisperse 1.9 µm analytical particles mixed with 25%, 
50%, and 75% (weight percent) of larger (3 µm and 5 µm) 
particles. In all the cases, the HETP increased as the PSD 
was broadened, with particularly detrimental results for the 
columns spiked with 50 wt% or 75 wt% of larger particles. 
The drop in chromatographic performance was attributed to 
the settling of the small 1.9 µm particles within the channels 
formed by the large particles, therefore, producing beds with 
reduced homogeneity as well as lower external porosity [68].

Other stationary phases employed in chromatography 
include monoliths [69], membranes [70], and fibres [71], 
which all share the main advantages of higher permeability 
and mass transport rates over the conventional particles. To 
date, only monoliths have gained a significant traction as 
competitors to packed columns in the analytical and pre-
parative chromatography arena. Their porous structure is 
composed of a complex network of macropores whose size 
and shape are dictated by the conditions employed during 
their manufacture. On one hand, this gives the flexibility to 
prepare monoliths having different skeleton and pore sizes, 
thus creating materials with reduced flow resistance (i.e., 
large pores) [72] and increased column performance (i.e., 
small skeleton size, in line with the use of smaller particles 
in traditional chromatography) [13, 73–75]. On the other 
hand, monoliths can be afflicted with structural imperfec-
tions leading to preferential flow paths and channelling [76]. 
Monolithic columns also commonly exhibit trans-column 
heterogeneities caused by the formation of temperature 
and concentration gradients during their production as the 

Fig. 4  Velocity fields showing the use of embedded particles to alle-
viate sidewall effect in pillar arrays. Note the similarity between the 
velocity fields next to the sidewalls and inside the pillar array, espe-

cially after tuning the outer pore diameters as shown in the bottom 
images. Reprinted with permission from [61]
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exothermic polymerisation reactions progress [74, 77, 78]. 
Once more, this unavoidably leads to a random configura-
tion of pores and channels running through the column, as 
opposed to ideal regular patterns [79]. The development of 
monolithic columns is another emerging branch of chroma-
tographic research which could be greatly complemented 
by 3D printing. In packed beds, the magnitude of the flow 
through a pore is dictated by the size of the stationary-phase 
particle (the domain size), with smaller particle sizes defin-
ing smaller pores and, therefore, higher flow resistance. Con-
trastingly, the macropores of a monolithic column can be 
kept at a near-constant size, while the characteristic skeleton 
size is varied within practical limits, as shown in Fig. 5 [76].

To describe and model the flow behaviour of real mono-
lithic columns, it is customary to simplify their complex 
porous morphology into regular networks of channels. In 
2004, Vervoort and colleagues represented the monolithic 
skeleton as tetrahedral unit cells periodically repeating in 
the three-dimensional space, allowing the simulation of an 
infinitely extending homogeneous column (Fig. 5) [80]. In 
a follow-up study, they concluded that the band broaden-
ing due to the A-term was around one order of magnitude 
smaller for the ordered monolith than that obtained in a real, 
disordered silica monolith, while the B and C terms were 
around their expected values [81]. In 2006, Gzil and col-
leagues investigated the effects of monolith heterogeneity, 
porosity, and domain size on HETP, and concluded that the 
columns become less efficient as their disorder is increased. 
More recently, Jungreuthmayer proposed modelling the 
porous morphology of monoliths using channels with alter-
nating wide and narrow diameter [79]. While this model is 
appropriate in describing the pressure drops characteristics 
of the experimental monolith, its extension to describe the 
retention behaviour of solutes has not been discussed.

An expedient to create perfectly homogeneous columns 
was proposed by Fee et al. who employed 3D printing to 

create ordered stationary phases composed of monodisperse 
spherical particles in a simple cubic arrangement, as well 
as structures containing monodisperse parallel straight or 
herringbone channels (Fig. 6) [19]. Residence-time distri-
bution experiments revealed that these stationary phases 
were almost exact replicas of the source digital models. 
They did note that the particles were slightly irregular on 
the micron scale due to lack of control over factors such 
as the printer’s resolution limits, venting characteristics of 
the printer’s chamber, forces such as surface tension, and 
defects during the deposition of the printed material. How-
ever, these drawbacks only represent the inherent crudity of 
the developing 3D printing technology, which will become 
gradually less significant as printer performance improves. 
This work also highlighted the opportunity to circumvent 
wall constraints by effectively embedding the particles into 
the column walls, as well as minimising radial homogenei-
ties in the flow by appropriate design of the flow distributor 
and collector at the column entrance and outlet. The work 
of Fee and colleagues most importantly demonstrates the 
ability to design homogeneous beds using computer soft-
ware, and their reproducible fabrication through 3D printing. 
This method, albeit currently limited by its resolution, speed, 
and available materials (to name a few factors), represents a 
new and feasible approach to the fabrication of packed beds. 
Stationary phases with new geometries and configurations 
can be conceived, designed, printed, and tested, ultimately 
advancing the investigation of fundamental principles and 
phenomena in chromatography as well as the determination 
of optimal column designs for industrial applications.

Particle Shape

It is widely held that spherical particles are the best shape 
to pack chromatography columns. This concept is so preva-
lent that is often taken for granted as a true statement. It 

Fig. 5  Schematic diagram shows the maintenance of domain size, while monolithic skeleton size and subsequent porosity are varied. Published 
with permission from Gzil et al. [13]
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is true that the shift from irregular particles (e.g., crushed 
porous glass or silica) to spherical particles represented a 
major milestone in chromatography [82]. However, this 
conclusion is only valid for columns packed using the con-
ventional slurry-based procedures, which unavoidably pro-
duces a random bed of particles regardless of their original 
shape. In 2009, Lottes et al. employed X-ray tomography 
to show that intra-column homogeneity in a slurry-packed 
bed is better achieved using regular, spherical particles as 
opposed to irregular particles [83]. Given that slurry packing 
has been and still is the standard in column chromatography, 
resin manufacturers have focused on production methods 
that deliver the most spherical particles possible and with 
as homogeneous size as possible (see discussion on particle-
size distribution in “Homogeneity” section).

Investigations of particle shape in two-dimensional col-
umn formats can, again, offer some useful insights that can 

be qualitatively transferred into three dimensions. The quest 
for the ideal pillar shape in 2D columns has been carried 
out mostly though Computational Fluid Dynamics (CFD) 
methods, as CFD gives the designer the freedom to create 
pillar arrays with low time and financial burdens. Following 
this approach, De Smet et al. and Gzil et al. investigated the 
performance of equilaterally staggered arrays of cylindri-
cal, hexagonal, oval-shaped, and diamond-shaped pillars 
(Fig. 7) [38, 84]. It was found that HETP and separation 
impedance significantly decreased when axially elongated 
diamond-shaped pillars were considered. The researchers 
concluded that infinitely elongated pillars, effectively a 
series of parallel plates, would provide a theoretically ideal 
column morphology with no polydispersity issues. While 
this is theoretically true, small irregularities in the channel 
dimensions of a real column would be detrimental to the 
performance of the whole column, hence the need to split 

Fig. 6  Geometric designs of 3D-printed bed packings: a simple cubic beads, b straight channels, and c herringbone channel. Reprinted with per-
mission from [19]

Fig. 7  Calculated velocity fields 
for a cylindrical, b hexagonal, 
and c elongated diamond-
shaped pillars with equal cross-
sectional area. Streamline shade 
indicates local velocity, with 
darkest representing highest 
velocity. Reprinted with permis-
sion from [84]
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and re-connect the fluid flow at regular intervals, e.g., using 
diamond-shaped pillars [49]. De Smet and co-workers also 
analysed the effect of external porosity in conjunction with 
pillar shape and found that, for all porosities considered, the 
diamond-shaped pillars gave the smallest HETP and fastest 
separation [85]. They theorised that elongated pillars cause 
less flow disturbance in their wake, reducing eddies, and, 
consequently, A-term band broadening. To date, diamond-
shaped pillars are still the benchmark in 2D chromatographic 
chips [86, 87].

The pillar shape can affect more than just A-term band 
broadening: by physical experimentation, Op de Beeck et al. 
found that orthogonally elongating the pillars of a 2D bed 
could produce up to a sixfold gain in non-retained column 
HETP [37]. This effect was attributed to the decrease in axial 
diffusion caused by severe inhibition of fluid flow in the lon-
gitudinal direction and subsequent promotion of anisotropy 
in this direction.

2D columns are generally fabricated with individual pil-
lars that do not contact each other. This condition cannot be 
met in a 3D structure, where their particle elements must be 
in mutual contact to ensure structural stability of the station-
ary phase. In practice, the concept of “packing” is lost in an 
ideally homogeneous 3D chromatography column, with an 
interconnected structure effectively having monolithic prop-
erties. For example, a homogeneous column composed of 
diamond-shaped beads is only structurally possible if these 
are uniformly arranged and slightly overlapping, as shown in 
Fig. 8, rather than just equilaterally staggered [88].

The effect of particle shape in three-dimensional columns 
is a topic with very little consideration in the literature. In 
2010, Yang and colleagues studied the heat-transfer char-
acteristics of ordered beds composed of axially elongated 
ellipsoids with different packing configurations and mor-
phology. Compared to homogeneous beds of spherical 
particles, the axially elongated ellipsoids showed reduced 
pressure drops, although the heat-transfer coefficients were 
similar [89]. Further simulations by Li et al. confirmed the 

benefits of particle elongation in terms of chromatographic 
efficiency and pressure drops [11, 90], demonstrating that 
beds composed of axially elongated ellipsoidal particles 
have improved hydrodynamic characteristics (lower pres-
sure drops) and chromatographic performance (smaller plate 
height) than their spherical counterparts. The authors attrib-
uted this result to the greater uniformity in local velocities 
and smaller stagnant areas. These findings in 3D columns 
are consistent with simulations on 2D columns, where axi-
ally elongated pillars are routinely employed.

In 2017, Nawada et al. demonstrated the 3D printing of 
perfectly ordered beds with particles having different shapes, 
including truncated icosahedra (approximating spheres), tet-
rahedra, octahedra, and stella octangulae (Fig. 9). For the 
first time, the use of 3D printing enabled the fabrication of 
columns with homogeneous packings, i.e., physical columns 
that could be connected to chromatography equipment and 
experimentally tested [91]. Interestingly, beds composed 
of tetrahedral particles are endowed with smaller reduced 
plate height than those made of spherical particles over a 
wide range of Pe numbers, a result in line with the use of 
diamond-shaped pillars in 2D columns. More importantly, 
this result questions the accepted concept that spherical par-
ticles are superior to any other particles shape. While this 
might be true for random packings, the new landscape of 
ordered beds presents the opportunity for novel designs for 
improved columns with homogeneous geometry.

Packing Configuration

3D structures exhibit a higher degree of conformational free-
dom than their simpler 2D counterparts. A homogeneous 3D 
column can be visualised as an array of perfectly duplicated 
unit cells in all three dimensions [92]. Yet, there is no limit 
to the complexity of the unit cell, as long as it obeys the 
basic boundary conditions for periodicity in all dimensions 
to ensure continuity and homogeneity of the solid phase. It 
is, therefore, apparent how the investigation of the “ideal” 

Fig. 8  Comparison of a non-
overlapping and b overlaying 
cuboidal particles in the simple 
cubic arrangement. Printed with 
permission from [88]
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structure for chromatographic operations exponentially 
increases in its complexity when moving from 2D to 3D. 
The first studies on packing configurations started in 2004, 
when Schure et al. investigated in silico the flow effects of 
various homogeneous packed beds of spheres in the simple 
cubic (SC), body-centred cubic (BCC), and face-centred 
cubic (FCC) arrangements, as well as a randomly packed 
structure [93]. Their simulations indicate that, in the range 
of Reynolds numbers commonly used in HPLC operations, 
the FCC arrangement exhibits lower band broadening than 
SC, BCC, or randomly packed arrangements (Fig. 10). This 
result was linked to the distribution of flow velocities in the 
bed, with FCC characterised by a narrower range of veloci-
ties than the other arrangements. In other terms, the flow 
field in the FCC arrangement enables a relatively uniform 
velocity profile across the entire bed, a condition close to 
the theoretical plug flow profile of ideal columns. On the 
other hand, BCC, SC, and random configurations displayed 
wider distributions of flow velocity, i.e., increased prob-
ability of stagnation zones (low velocity areas) as well as 
preferential channels (high velocity zones), both of which 
significantly contribute to A-term band broadening. The 
presence of preferential channels is particularly obvious in 
the SC configuration, where unobstructed channel-like paths 
running down the column are present between the spherical 
particles (Fig. 11). This work was extended by Li et al. who 

used the CFD simulations to investigate the chromatographic 
performance of homogeneous beds of spherical or ellipsoi-
dal particles arranged into SC, BCC, or FCC configurations 
[90]. In line with the work of Schure et al., they concluded 
that, regardless of particle shape, FCC packing performs bet-
ter than the other packing arrangements. Again, the superior 
efficiency of the FCC configuration was attributed to the 
more uniform mobile-phase velocity distribution in the bed.

This concept was experimentally demonstrated in the 
2017 paper of Nawada et al. where columns containing 
arrays of spherical particles in the SC, BCC, and FCC con-
figurations were 3D printed and their plate height meas-
ured in non-retained conditions. The experimental results 
clearly show that the van Deemter curve for the FCC column 
(showing a very low minimum reduced plate height of 1) sits 
below that for the BCC and SC arrangements over a range 
of Pe numbers (Fig. 10) [91]. This conclusion qualitatively 
matches the prior computational results, with deviations 
between experiments and simulations credited to experimen-
tal errors, flow non-idealities (e.g., due to the 3D printed col-
umn distributor and the presence of column walls) and minor 
deviations or defects in the 3D printed stationary phase.

These studies, however, limited their analysis to 
arrangements with main axis aligned with the main 
direction of the flow. A further degree of conformational 
freedom is represented by the orientation of the ordered 

Fig. 9  Visualisation of the bead morphologies 3D printed by Nawada et al.: a spheres, b tetrahedra, c octahedra, d triangular bipyramids, and e 
stella octangulae. Reprinted with permission from [91]



452 C. Salmean, S. Dimartino 

1 3

structures with respect to the axial direction of the col-
umn. Dolamore et al. considered again SC, BCC, and FCC 
configurations of spherical particles, but their simulations 
also comprised a range of bed orientations obtained by 
rotating the unit cell with respect to the main axis of flow 
[94]. Interestingly, chromatographic efficiency measured 
in terms of the reduced plate height was not simply related 
to packing configuration, but was also highly dependent on 
its alignment. For example, SC structures in the [111] ori-
entation (relative to a cubic 3D lattice) performed almost 
as well as FCC in the standard [001] orientation, thus chal-
lenging FCC as the most efficient packing configuration. 
On the other hand, rotation of the FCC arrangement from 
the very efficient [001] alignment to the [011] direction 
caused a dramatic increase in plate height, thus produc-
ing worse chromatographic performance. It was demon-
strated that there is a strong linear relationship between 
plate height and tortuosity, a descriptor of the degree of 
turns and interconnections in the bed. Dolamore et al. 

concluded that arrangements exhibiting higher tortuos-
ity are characterised by higher transverse mixing, which, 
in turn, reduces inter-channel heterogeneities, promoting 
homogeneous velocity profiles and thus leading to reduced 
axial dispersion phenomena and improved column per-
formances. This result, therefore, agrees with Schisla’s 
polydispersity effect.

Another conformational degree of freedom is posed by 
the 3D orientation of each particle in the unit cell. While this 
effect is not of relevance for spherical particles, it might have 
a reasonably strong influence on beds composed of other 
particles shapes such as, for example, the well-performing 
tetrahedral particles discussed previously in “Particle Shape” 
section. Yet, this option has not been investigated so far, 
possibly because of the observation that more efficient chro-
matographic beds are not composed of discrete particles but 
rather of other geometries such as the bicontinuous and tri-
ply periodic minimal surface (TPMS) functions, which are 
discussed in “Design” section.

Fig. 10  van Deemter plots for ordered arrays of spherical particles in different arrangements: simple cubic, body-centred cubic, and face-centred 
cubic. a Simulated results (with permission from Schure et al. [93]) and b experimental results (with permission from Nawada et al. [91])

Fig. 11  Cross section from 
simulation of flow through SC 
packing, showing the presence 
of preferential flow paths and 
stagnant regions. High local 
flow velocity is visible along the 
axial centre and lower velocity 
around the particles. Adapted 
with permission from [94]
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Alternative Column Formats

Recent developments in proteomics, metabolomics, and 
the health sciences require advanced chromatographic 
methods able to deliver extremely high peak capacities 
in a reasonably short time [95]. Multidimensional sepa-
rations (e.g., LC × LC−MS and LC × LC × LC−MS) 
[96] and extremely long columns in miniaturised format 
[97] are the two main approaches currently considered to 
address this need. Both alternatives can greatly benefit 
from appropriate design of the column cartridge, making 
the traditional cylindrical formats relatively obsolete.

Extremely long chromatographic columns can only be 
manufactured, transported, and employed if they can fit 
onto a reasonably small area, e.g., a microchip. New col-
umn geometries with folded or coiled channels have, there-
fore, been recently proposed to solve this issue; folded 
configuration is the most popular solution in pillar-array 
columns for portable microchip-HPLC [98, 99]. An inter-
esting example is the manufacture, through photolitho-
graphic methods, of a 3.1-m-long pillar-array column by 
De Malsche et al. attaining an efficiency of over 1-million 
theoretical plates [40].

One challenge in the creation of folded columns is 
the so-called ‘racetrack effect’, i.e., the skewing of sol-
ute bands caused by non-uniform fluid velocity across 
the column’s turns (Fig. 12a). In the racetrack effect, the 
solute on the ‘outside track’ of the turn travels farther 
than that on the ‘inside track’, with deleterious effects on 
column performance [100]. In 2001, Griffiths et al. used 
numerical simulation to design low-dispersion turns for 
microchip chromatography applications, concluding that 
narrowing the turns and thus minimising the difference 

between the inner and outer radii effectively reduce dis-
persion (Fig. 12b) [101]. The integration of this feature in 
two-dimensional folded columns has allowed columns to 
be miniaturised to chip-scale while maintaining extremely 
low HETP values [40]. Further development of these 
devices has led to the successful separation of amino acids 
in just 40–200 s, setting the scene for rapid and easy-to-
use modular microchip-HPLC in proteomics [97, 99, 102].

In 2014, Sandron et al. manufactured long (600 mm) 
capillary columns with a footprint of just 30 × 58 mm. The 
complex column casing, manufactured through 3D printing, 
contained a double-handled spiral capillary to fit the column 
in a coiled configuration. (Fig. 13) [20]. The column was 
slurry-packed with silica particles and tested for the separa-
tion of a mixture of small molecules, but poor packing due 
to the surface roughness of the column’s walls (caused by 
the 3D printing technique employed) and the racetrack effect 
from the curved structure dominated band broadening. In a 
follow-up study, Gupta et al. polymerised a monolithic sta-
tionary phase inside the 3D printed spiral capillary, partly 
(but elegantly) overcoming the problems associated with the 
rough column walls and the related packing difficulties [21]. 
More recently, the same authors empirically attempted to 
reduce the racetrack effect by testing different 3D-printed 
column geometries [103]. 2D serpentine, 3D spiral, and 3D 
serpentine capillary columns of equal length and i.d. were 
3D printed and functionalised with a monolithic stationary 
phase. It was found that the 3D serpentine column exhib-
ited the highest performance, with higher plate height and 
peak capacity than either of the other designs. The authors 
suggest that this effect results from improved interactions 
between channels in the monolith, but the simulation meth-
ods employed to reach this conclusion do not seem robust 
enough to fully support this hypothesis. For example, this 

Fig. 12  Numerical simulation showing dispersion due to the racetrack effect across a non-optimised and b optimised turns. Reprinted with per-
mission from [101]. Copyright (2001) American Chemical Society
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theory was contradicted in a 2018 study by Gilar et al. in 
which the authors use simulation and experiments to evalu-
ate the performance of straight packed channels versus a 
variety of serpentine channels. It was concluded that turns 
negatively affect 3D LC performance, with a 24% loss of 
efficiency observed for an S-shaped 150 µm i.d. channel with 
respect to a straight column. However, it was also observed 
that tapering the turns and reducing the channel size can 
alleviate these performance losses [104], in agreement with 
the studies on two-dimensional pillar-array columns men-
tioned above.

These new column formats can also help with tempera-
ture control, e.g., the minimisation of axial and radial tem-
perature gradients in the column due to frictional heating, 
preventing any loss of efficiency due to inhomogeneous 
properties of the analytes [105]. Viscous heating can be 
alleviated by increasing the thermal conductivity of the col-
umn cartridge, allowing more effective heat transfer from 
the centre to the edges of the column for dissipation. In 
2014, Vonk et al. fabricated a titanium-scaffolded structure 
and polymerised a monolith within the scaffold [75]. They 
showed that highly conductive column casings can drasti-
cally reduce temperature heterogeneity through rapid dis-
sipation of frictional heat. The use of titanium as material 
with high thermal conductivity was also employed in the 
capillary columns described by Gupta et al. [20, 21, 103]; 
this, along with the coiled design of the column cartridge, 
allowed effective temperature control by positioning Peltier 
modules below and above the compact chromatographic 
chip.

The move from single-column chromatography to com-
prehensive two-dimensional LC represented a massive step 
change for the separation of complex mixtures. Yet, 2D-LC 
reaches its analytical limits when challenged to isolate the 
thousands of components found in typical samples from 
the “omics” fields [106]. Spatial three-dimensional chro-
matography (LC × LC × LC) is expected to significantly 
increase peak capacity through the coupling in sequence of 
three orthogonal (i.e., with differing retention mechanisms 
and selectivity) chromatographic separations [96]. In 2015, 

Wouters et al. designed and developed, for the first time, a 
spatial 3D-LC device where the three different dimensions 
were contained in a single microchip (Fig. 14) [107]. The 
authors demonstrated the potential improvements of their 
3D-LC chip in peak capacity and analysis time over 1D-LC 
and 2D-LC. Yet, its manufacture is inherently complex and 
delicate, involving the exact stacking of microfluidic mod-
ules to ensure appropriate connectivity between the different 
dimensions. 3D printing has recently been proposed to fabri-
cate 3D-LC chips to achieve ultrahigh peak capacities [108].

Opportunities and Challenges of 3D Printed 
Chromatography Columns

It is clear that 3D printing has the potential to offer numer-
ous solutions to current challenges at the forefront of chro-
matography. Column performance can be improved at all 

Fig. 13  Rendering of 3D-printed titanium capillary column produced by Sandron et al. Reproduced from [20] with permission from The Royal 
Society of Chemistry

Fig. 14  3D-LC device assembled from stacked fluidic modules, with 
X-, Y-, and Z-axes displayed. Reproduced from [107] with permission 
from The Royal Society of Chemistry



4553D-Printed Stationary Phases with Ordered Morphology: State of the Art and Future Development…

1 3

scales through careful control of the bed morphology, with 
applications spanning from small columns in the analyti-
cal field to large downstream equipment in the biopharma 
industry. This concept can be extended to the production 
of bespoke column designs, customised to satisfy specific 
separation requirements. Indeed, there has recently been 
interest in the use of 3D printing in chromatographic appli-
cations other than LC [109]; for example, planar chroma-
tography [110, 111] and gas chromatography [112, 113]. 
Another recent development in the field is the investigation 
of 3D-printed HPLC ancillary elements, such as valves for 
microflow injection analysis [114], flow distributors [19], 
detectors [115], and tips for coupling with mass spectrom-
etry (MS) equipment [116].

Effectively, 3D printing could enable the quick prototyp-
ing and manufacture of complex bespoke equipment at low 
cost [111, 117], a functionality which is likely to revolu-
tionise analytical and industrial chromatography as special-
ised equipment is designed on a case-by-case basis [118, 
119]. The discussion below presents the current challenges 
and opportunities in the field, with an aim to advise future 
research. This review deliberately chose not to cover 3D 
printing techniques, but the reader is referred to the follow-
ing reviews for more information on this facet [18, 23, 24, 
120, 121].

Resolution and Speed of 3D Printers

The capability of AM to produce highly ordered packed beds 
from CAD models was proven for the first time by Fee et al. 
[19], but the applications of the technology are still some-
what limited due to the resolution and speed of the printers. 
This limitation was first observed in the biomedical field, 
where porous materials were 3D-printed to fabricate cell 
scaffolds for regenerative medicine [122, 123]. At the time, 
most researchers were satisfied with features (e.g., strands 
and channels) of around 300 µm diameter, an appropriate 
size to accommodate the cells and promote vascularisation. 
While 300 µm is in the same order of magnitude of parti-
cle sizes used in preparative and industrial chromatography 
(even though one must note that it sits at the very top of the 
range), this figure is two orders of magnitude larger than 
the average size of particles used in the HPLC applications. 
The need to refine the resolution of 3D printing techniques 
to match chromatographic requirements is thus apparent.

The 3D printing arena is highly dynamic and extremely 
competitive, with continuous improvements in the existing 
printing methods and new technologies being developed. 
High-resolution 3D printing technologies exist today, such 
as, for example, Direct Inkjet Printing (DIP, nominal resolu-
tion as low as 10 µm) [124, 125], Projection Micro Stereo-
lithography (PµSL, reported nominal resolution 0.6–2 µm) 
[126, 127], and Two Photon Photopolymerization (TPP, 

nominal resolution 0.1–1 µm) [128–130]. In 2014, Malin-
auskas et al. successfully demonstrated the 3D-printing of 
materials with features as small as 5-µm in size [131]. These 
features were subtractively manufactured on 3D-printed 
structures by laser ablation, demonstrating how a combined 
approach could be applied to overcome the resolution limits 
of additive manufacturing.

Yet, there is major discrepancy between nominal resolu-
tion and practically achievable feature size. For example, Fee 
et al. noted that the resolution of their printer was 28 µm, 
but the desired geometries could only reliably be produced 
at an order of magnitude larger [19]. Nawada et al. used the 
same printer to produce particles with a diameter of roughly 
400 µm, and observed striations ranging from 25 to 32 µm 
in size as a result of the 3D-printer’s layering process [91]. 
These imperfections are a potential source of local inhomo-
geneity. In perspective, to obtain sub-2-µm particles through 
3D-printing methods, a technology with nominal resolution 
in the order of 100 nm or less would be required. While 
TPP can achieve such resolution levels, unreasonably long 
printing times (months if not years!) would be required to 
manufacture a full-scale column using such high-resolution 
methods. Despite the current speed and resolution limita-
tions, work in this area is providing a solid proof-of-concept 
base to revolutionise chromatographic operations in the near 
future.

Materials

Materials suitable for chromatographic operations are inher-
ently porous, with small diffusional pores in the range of the 
tens of nanometers. While this range of characteristic dimen-
sions is out of the reach of 3D printing technologies (and 
most likely will be so in the near future), it is paramount 
that printed chromatography media maintain highly porous 
characteristics, displaying large surface areas to maximise 
interaction with the analytes and thus enable high separa-
tion capacities. In addition, the material must have excellent 
mechanical properties to withstand the high pressures typi-
cal of HPLC and UHPLC operations, a particularly challeng-
ing task for porous materials [132].

The compatibility of materials that can be processed by 
3D printers and their suitability for chromatographic opera-
tions is another challenge to consider. 3D printing technolo-
gies have greatly evolved, allowing the creation of complex 
shapes with a range of materials including metals, ceram-
ics, polymers, and hydrogels. Some of these materials, e.g., 
silica, hydroxyapatite, acrylates, methacrylates, agarose, 
and cellulose, are currently employed in chromatography 
columns too [29, 132, 133]. While a partial crossover of 
materials between 3D printing and chromatography does 
exist, in reality, a number of constraints limit the immediate 
transfer of standard 3D printing techniques and materials to 
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the chromatography field. For example, while chromatog-
raphers are interested in porous materials, the 3D printing 
industry tends to produce “dense parts”, common terminol-
ogy in the 3D printing community to describe objects with 
minimal void fraction and greater mechanical properties. 
This issue could be solved, for example, by the develop-
ment of new 3D printable material formulations that include 
appropriate porogens or pore formers. Porogenic solvents 
such as water, alcohols (e.g., methanol, ethanol, 1-propanol, 
2-propanol, 1,4-butanediol, dodecanol, cyclohexanol), dime-
thyl sulfoxide, and polyethylene glycol (PEG), have already 
been successfully employed in the preparation of monolithic 
stationary phases in liquid chromatography [134–138]. An 
approach to the manufacture of ordered stationary phases 
is a three-step process referred as to “negative templating” 
[139]. In the first step, standard 3D printers and materials 
are employed to produce moulds (i.e., negative templates) 
having appropriate morphology. In the second step, the 
mould is infused with the chromatographic material, while, 
in the last step, the original mould is dissolved through the 
use of appropriate solvents (e.g., acetone if printing with 
ABS-based materials, water if printing with polyvinyl alco-
hol, or organic oils if printing with wax-based materials). 
While this approach successfully leads to a stationary phase 
with desired three-dimensional morphology and appropri-
ate material for chromatographic operations, its multi-step 
procedure requires long manufacturing times and adds com-
plexity, hence conflicting with industrial priorities.

Development of materials compatible with 3D printing 
techniques and chromatographic operations is strategically 
important for the other practical and more important reasons. 
Materials employed in 3D printers are often proprietary and 
with undisclosed composition, containing an uncertain num-
ber of additives, fillers, plasticisers, and other components 
which might interact unpredictably during activation and 
functionalisation procedures and ultimately interfere with 
chromatographic operations. Worthy of mention is the seren-
dipitous result obtained by MacDonald and co-workers, who 
employed a polyjet 3D printer and a photopolymerisable 
material to create a thin-layer chromatography device with-
out the need to modify the stationary phase [110]. The sepa-
ration was obtained thanks to the functional groups already 
present in the various components making up the formula-
tion, even though its composition is proprietary and only 
guessed by the authors through IR analysis. Unfortunately, 
further work is highly constrained by the lack of knowledge 
of the material formulation, preventing optimisation and fine 
tuning of the material to improve separation performance. 
Knowledge of the material employed is even more important 
for applications in downstream processing, where exact char-
acterisation of the materials employed in the manufacturing 
process is required to obtain FDA approval, including full 
analysis of extractables and leachables [140]. To solve this 

issue, ex-novo development of new material formulations 
is required. While this approach opens new opportunities 
for both the 3D printing and the chromatography industries, 
the uncertainties associated with compatibility issues and 
the long times required for material development, includ-
ing the warrant of appropriate mechanical properties, seem 
to discourage current research. Simon and Dimartino have 
recently reported a novel method for direct 3D printing of 
functional monolithic adsorbents for chromatography in one 
simple step [141]. The concept proposed is based on the 
controlled polymerisation (through a digital light process-
ing 3D printer) of bifunctional monomers bearing on one 
side the functional ligand, and, on the other end, a chemi-
cal group that can take part in the polymerisation reaction. 
To prove the concept, a strong anion exchange adsorber 
was directly 3D printed and tested for the separation of test 
model proteins (BSA) as well as proteins contained in cell 
culture supernatants. This approach does not only addresses 
the existing challenge of material compatibility between 3D 
printing and chromatographic operations, but also removes 
the traditional functionalisation steps currently carried out 
in the industry to produce chromatographically active sta-
tionary phases.

Design

The fabrication of columns by AM has potential to move 
away from the traditional particle-based beds and enables 
novel ideas and approaches to the design of homogeneous 
stationary phases with superior properties. The geometrical 
properties of the bed, e.g., porosity, surface area, and tor-
tuosity, can be tuned at one’s will, allowing the production 
of columns specialised to suit specific applications in the 
separation sciences. Thanks to the layer-by-layer fabrication 
process, 3D printing can create extremely complex model 
geometries with no additional effort or cost than printing a 
simple cube. This enables the shift from the conventional 
“packed” beds to “3D printed monolithic” beds, whose 
design is optimised for the improved mechanical strength, 
structural uniformity, and pressure-drop characteristics 
[118].

Salloum and Robinson studied in silico the mass transport 
properties in a monolithic geometry for use in gas chroma-
tography [142]. The unit cell, defined as the struts along the 
edges of a cube, was periodically repeated in the 3D space 
to obtain a macroscopic structure. The authors observed that 
such morphology performs better when oriented in the [111] 
axis with respect to the main direction of the flow. They also 
noticed that their 3D lattice geometry had superior HETP 
with respect to a bundle of parallel tubes, mostly thanks to 
the frequent mixing between flow paths. These conclusions 
match those presented by Dolamore et al. for spherical par-
ticles [94].
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Bicontinuous cubic structures and TPMS are other exam-
ples of complex but ordered geometries that could benefit 
chromatography (Fig. 15). These morphologies are relatively 
easily described by mathematical expressions, but are virtu-
ally impossible to fabricate using the conventional manufac-
turing techniques. TPMS produce structurally strong peri-
odic packing with interconnected flow paths having minimal 
flow resistance [143], all desirable qualities of a chroma-
tographic packing. A wide variety of TPMS exist, such as 
the Schwarz Primitive, Schoen Gyroid and Schwarz Dia-
mond, all of which can be represented mathematically and 
3D printed as monoliths. For example, the gyroid geometry 
(Fig. 15f) enables uniform distribution of internal stresses 
in a controlled manner, thus avoiding localised regions of 
stress overload from which cracks could form and propagate, 
eventually causing the disruption and crushing of the porous 
stationary phase [144–146].

Fee et al. 3D printed agarose columns based on the gyroi-
dal geometry, one of the TPMS, and employed them for 
chromatographic operations (Fig. 16) [139]. The material, 

functionalised with cation exchange groups, retained the 
positively charged cytochrome C protein (at neutral pH), 
while the negatively charged BSA protein and whole Saccha-
romices cerevisiae cells did not interact with the 3D printed 
column and were recovered in the flowthrough. This work 
demonstrates that 3D printing is a viable method to fabri-
cate fully functional chromatographic columns with complex 
but homogeneous morphology. In addition, it expands the 
applicability window of chromatographic operations, prov-
ing the concept of solid tolerant chromatography media, 
i.e., stationary phases with wide channels (300–500 µm) 
that enable the processing of feedstocks containing solid 
particles (e.g., cells, cell debris, and aggregates) without 
the risk of compromising the column characteristics (e.g., 
column clogging).

In his Ph.D. thesis, Dolamore investigated the chroma-
tographic performance of a number of 3D morphologies, 
including TPMS, using the Lattice Boltzmann modelling 
approach [147]. He concluded that TPMS exhibit smaller 
HETP than any arrangement of spherical particles, mainly 

Fig. 15  Illustrations of various TPMS. Permutations of F-RD represented by a and b P2-GD by c, d Double Gyroid by e, f L by g, h and D’ by i, 
j. Reprinted with permission from [147]
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because of the greater uniformity of the flow channels within 
the monolith compared to spherical packings. These results 
promise an imminent revolution in the chromatography 
arena through additive manufacturing. Yet, the choice of 
cuboidal or gyroidal geometries is relatively empirical, and 
more modelling and experimental work is required to even-
tually identify the “ideal” column morphology for chroma-
tographic operations.

Concluding Remarks

20 years ago, in 1998, the group of Regnier proposed the 
idea of pillar-array micromachined columns (Fig. 1), dem-
onstrating, for the first time, the manufacture of fully homo-
geneous stationary phases [35]. In the following years, a 
series of experimental and computational works consist-
ently evidenced far superior chromatographic performance 
of ordered homogeneous beds over randomly packed col-
umns, e.g., reduced plate heights as low as 0.5 and very-low-
pressure-drop characteristics.

The literature on this topic is extremely rich on two-
dimensional pillar-array columns, while studies on three-
dimensional beds are scarcer. This difference can be 
credited to past (and current) limitations of the manufac-
turing methods used to create such column morphologies. 
Micromachining and photolithography, the two main meth-
ods to fabricate two-dimensional columns, were available 

20 years ago, while additive manufacturing, or 3D print-
ing, was unknown to practically all. In the last 10 years, 
3D printing has become increasingly affordable and acces-
sible to many, with good compromise between cost and 
resolution. There is consequently a renewed interest in 
homogeneous stationary phases that can be fabricated in 
three dimensions, finally allowing experimental testing of 
such new particle configurations. The first example of a 
3D printed chromatography column was presented by Fee 
et al. in 2014 with packed beds designed in simple cubic 
arrangement of spherical particles [19], a study which also 
demonstrated the 3D printing of ancillary elements such as 
connectors, flow distributors, and column walls together 
with the stationary phase.

Since then, a series of experimental and computational 
studies have been published, considering various morpho-
logical features of the bed such as particle arrangement, 
shape, and alignment, and all confirming the anticipated 
advantages of homogeneous stationary phases over their 
random counterpart. It must be noted here that the concept 
of a packed bed is practically lost in 3D printed columns. 
In fact, additive manufacturing is not limited by the com-
plexity of the design, and more efficient beds based on 
regular monolithic architectures (e.g., TPMS) have already 
been reported. Customisability, another advantage of addi-
tive manufacturing, opens the opportunity to design and 
create bespoke stationary phases to perfectly suit specific 
applications, both in the analytical and downstream fields. 

Fig. 16  Left: CAD design of TPMS monolith modelled on the Sch-
oen Gyroid. Reprinted with permission from [116]. Right: 3D printed 
TPMS stationary phase in a chromatographic column. The column, 
bearing cation exchange functionalities, was overloaded with a mix-

ture of BSA, cytochrome C, and whole yeast cells (Sarracomices cer-
evisiae). Red colour is due to the bound cytochrome C. With permis-
sion of [118]
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Computational methods currently are the best tool to harness 
this opportunity, allowing rapid and inexpensive optimisa-
tion of the stationary-phase geometry.

Beyond the chromatographic bed, additive manufactur-
ing also enables new designs for the column cartridge, with 
the possibility of miniaturising extremely long columns in 
microchip formats, or to integrate several columns in the 
same 3D printed device for, e.g., LC × LC × LC. In the 
future, smart designs for injectors, valves, detectors, etc., 
might benefit from fabrication and integration within a 3D 
printed column.

Yet, some key challenges must be addressed to make 3D 
printing and chromatography truly compatible. First, new 
additive manufacturing methods should be developed to 
allow fabrication of columns of reasonable size, at a rea-
sonable speed, and at a desired resolution—where the “rea-
sonable” adjective depends on application, e.g., analytical 
versus downstream processing. The development of materi-
als compatible with both 3D printing and chromatography 
operations is another fertile area of growth. In fact, most of 
the materials in today’s 3D printing arena have proprietary 
formulations, hindering any material optimisation effort. To 
overcome this barrier, further porous materials with appro-
priate chemistry for chromatography and appropriate physi-
cal properties for 3D printing should be developed.

It is expected that future improvements in additive man-
ufacturing and computational tools will allow the design 
and fabrication of highly efficient and specialised columns 
at low cost, heralding the next generation of packed-bed 
technology.
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