212 research outputs found

    The α2β1 integrin mediates the malignant phenotype on type I collagen in pancreatic cancer cell lines

    Get PDF
    Pancreatic cancer is characterised by a hallmark desmoplastic response that includes upregulated expression of the extracellular matrix, and type I collagen in particular. Recent studies indicate that pancreatic cancer cells stimulate type I collagen synthesis in adjacent stellate cells, and that this upregulated type I collagen expression promotes the malignant phenotype in tumour cells as defined by increased proliferation, resistance to chemically induced apoptosis, and increased tumorigenesis. The integrin specificity of this interaction between type I collagen and tumour cells was not identified, however. In the present study, we examined eight pancreatic cancer cell lines for adhesion, proliferation, and migration, on types I and IV collagen, fibronectin, laminin, and vitronectin, as well as integrin expression. Our results indicate, for the overwhelming majority of cell lines, that type I collagen promotes the strongest adhesion, proliferation, and migration relative to the other substrates tested. Utilising function-blocking monoclonal antibodies directed against particular integrin subunits in cell adhesion and migration inhibition assays, we demonstrate further that the malignant phenotype on type I collagen is mediated specifically by the α2β1 integrin. These results identify α2β1 integrin-mediated adhesion to type I collagen as a potential therapeutic target in the treatment of pancreatic cancer

    Does self-love or self-hate predict conspiracy beliefs? Narcissism, self-esteem, and the endorsement of conspiracy theories

    Get PDF
    Across three studies, we examined the role of self-evaluation in predicting conspiracy beliefs. Previous research linked the endorsement of conspiracy theories to low self-esteem. We propose that conspiracy theories should rather be appealing to individuals with exaggerated feelings of self-love, such as narcissists, due to their paranoid tendencies. In Study 1, general conspiracist beliefs were predicted by high individual narcissism but low self-esteem. Study 2 demonstrated that these effects were differentially mediated by paranoid thoughts, and independent of the effects of collective narcissism. Individual narcissism predicted generalized conspiracist beliefs, regardless of the conspiracy theories implicating in-group or out-group members, while collective narcissism predicted belief in out-group but not in-group conspiracies. Study 3 replicated the effects of individual narcissism and self-esteem on the endorsement of various specific conspiracy theories and demonstrated that the negative effect of self-esteem was largely accounted for by the general negativity toward humans associated with low self-esteem

    Degradability of cross-linked polyurethanes based on synthetic polyhydroxybutyrate and modified with polylactide

    Get PDF
    In many areas of application of conventional non-degradable cross-linked polyurethanes (PUR), there is a need for their degradation under the influence of specific environmental factors. It is practiced by incorporation of sensitive to degradation compounds (usually of natural origin) into the polyurethane structure, or by mixing them with polyurethanes. Cross-linked polyurethanes (with 10 and 30%wt amount of synthetic poly([R,S]-3-hydroxybutyrate) (R,S-PHB) in soft segments) and their physical blends with poly([d,l]-lactide) (PDLLA) were investigated and then degraded under hydrolytic (phosphate buffer solution) and oxidative (CoCl2/H2O2) conditions. The rate of degradation was monitored by changes of samples mass, morphology of surface and their thermal properties. Despite the small weight losses of samples, the changes of thermal properties of polymers and topography of their surface indicated that they were susceptible to gradual degradation under oxidative and hydrolytic conditions. Blends of PDLLA and polyurethane with 30 wt% of R,S-PHB in soft segments and PUR/PDLLA blends absorbed more water and degraded faster than polyurethane with low amount of R,S-PHB

    Developmental morphology of cover crop species exhibit contrasting behaviour to changes in soil bulk density, revealed by X-ray computed tomography

    Get PDF
    Plant roots growing through soil typically encounter considerable structural heterogeneity, and local variations in soil dry bulk density. The way the in situ architecture of root systems of different species respond to such heterogeneity is poorly understood due to challenges in visualising roots growing in soil. The objective of this study was to visualise and quantify the impact of abrupt changes in soil bulk density on the roots of three cover crop species with contrasting inherent root morphologies, viz. tillage radish (Raphanus sativus), vetch (Vicia sativa) and black oat (Avena strigosa). The species were grown in soil columns containing a two-layer compaction treatment featuring a 1.2 g cm-3 (uncompacted) zone overlaying a 1.4 g cm-3 (compacted) zone. Three-dimensional visualisations of the root architecture were generated via X-ray computed tomography, and an automated root-segmentation imaging algorithm. Three classes of behaviour were manifest as a result of roots encountering the compacted interface, directly related to the species. For radish, there was switch from a single tap-root to multiple perpendicular roots which penetrated the compacted zone, whilst for vetch primary roots were diverted more horizontally with limited lateral growth at less acute angles. Black oat roots penetrated the compacted zone with no apparent deviation. Smaller root volume, surface area and lateral growth were consistently observed in the compacted zone in comparison to the uncompacted zone across all species. The rapid transition in soil bulk density had a large effect on root morphology that differed greatly between species, with major implications for how these cover crops will modify and interact with soil structure

    Alterations in integrin expression modulates invasion of pancreatic cancer cells

    Get PDF
    Background Factors mediating the invasion of pancreatic cancer cells through the extracellular matrix (ECM) are not fully understood. Methods In this study, sub-populations of the human pancreatic cancer cell line, MiaPaCa-2 were established which displayed differences in invasion, adhesion, anoikis, anchorage-independent growth and integrin expression. Results Clone #3 displayed higher invasion with less adhesion, while Clone #8 was less invasive with increased adhesion to ECM proteins compared to MiaPaCa-2. Clone #8 was more sensitive to anoikis than Clone #3 and MiaPaCa-2, and displayed low colony-forming efficiency in an anchorage-independent growth assay. Integrins beta 1, alpha 5 and alpha 6 were over-expressed in Clone #8. Using small interfering RNA (siRNA), integrin β1 knockdown in Clone #8 cells increased invasion through matrigel and fibronectin, increased motility, decreased adhesion and anoikis. Integrin alpha 5 and alpha 6 knockdown also resulted in increased motility, invasion through matrigel and decreased adhesion. Conclusion Our results suggest that altered expression of integrins interacting with different extracellular matrixes may play a significant role in suppressing the aggressive invasive phenotype. Analysis of these clonal populations of MiaPaCa-2 provides a model for investigations into the invasive properties of pancreatic carcinoma

    Endothelium-Derived Netrin-4 Supports Pancreatic Epithelial Cell Adhesion and Differentiation through Integrins α2β1 and α3β1

    Get PDF
    BACKGROUND: Netrins have been extensively studied in the developing central nervous system as pathfinding guidance cues, and more recently in non-neural tissues where they mediate cell adhesion, migration and differentiation. Netrin-4, a distant relative of Netrins 1-3, has been proposed to affect cell fate determination in developing epithelia, though receptors mediating these functions have yet to be identified. METHODOLOGY/PRINCIPAL FINDINGS: Using human embryonic pancreatic cells as a model of developing epithelium, here we report that Netrin-4 is abundantly expressed in vascular endothelial cells and pancreatic ductal cells, and supports epithelial cell adhesion through integrins α2β1 and α3β1. Interestingly, we find that Netrin-4 recognition by embryonic pancreatic cells through integrins α2β1 and α3β1 promotes insulin and glucagon gene expression. In addition, full genome microarray analysis revealed that fetal pancreatic cell adhesion to Netrin-4 causes a prominent down-regulation of cyclins and up-regulation of negative regulators of the cell cycle. Consistent with these results, a number of other genes whose activities have been linked to developmental decisions and/or cellular differentiation are up-regulated. CONCLUSIONS/SIGNIFICANCE: Given the recognized function of blood vessels in epithelial tissue morphogenesis, our results provide a mechanism by which endothelial-derived Netrin-4 may function as a pro-differentiation cue for adjacent developing pancreatic cell populations expressing adhesion receptors α2β1 and α3β1 integrins

    CXCR4/CXCL12 Participate in Extravasation of Metastasizing Breast Cancer Cells within the Liver in a Rat Model

    Get PDF
    INTRODUCTION: Organ-specific composition of extracellular matrix proteins (ECM) is a determinant of metastatic host organ involvement. The chemokine CXCL12 and its receptor CXCR4 play important roles in the colonization of human breast cancer cells to their metastatic target organs. In this study, we investigated the effects of chemokine stimulation on adhesion and migration of different human breast cancer cell lines in vivo and in vitro with particular focus on the liver as a major metastatic site in breast cancer. METHODS: Time lapse microscopy, in vitro adhesion and migration assays were performed under CXCL12 stimulation. Activation of small GTPases showed chemokine receptor signalling dependence from ECM components. The initial events of hepatic colonisation of MDA-MB-231 and MDA-MB-468 cells were investigated by intravital microscopy of the liver in a rat model and under shRNA inhibition of CXCR4. RESULTS: In vitro, stimulation with CXCL12 induced increased chemotactic cell motility (p,0.05). This effect was dependent on adhesive substrates (type I collagen, fibronectin and laminin) and induced different responses in small GTPases, such as RhoA and Rac-1 activation, and changes in cell morphology. In addition, binding to various ECM components caused redistribution of chemokine receptors at tumour cell surfaces. In vivo, blocking CXCR4 decreased extravasation of highly metastatic MDA-MB-231 cells (p < 0.05), but initial cell adhesion within the liver sinusoids was not affected. In contrast, the less metastatic MDA-MB-468 cells showed reduced cell adhesion but similar migration within the hepatic microcirculation. CONCLUSION: Chemokine-induced extravasation of breast cancer cells along specific ECM components appears to be an important regulator but not a rate-limiting factor of their metastatic organ colonization.Claudia Wendel, André Hemping-Bovenkerk, Julia Krasnyanska, Sören Torge Mees, Marina Kochetkova, Sandra Stoeppeler and Jörg Haie

    Urochordate Histoincompatible Interactions Activate Vertebrate-Like Coagulation System Components

    Get PDF
    The colonial ascidian Botryllus schlosseri expresses a unique allorecognition system. When two histoincompatible Botryllus colonies come into direct contact, they develop an inflammatory-like rejection response. A surprising high number of vertebrates' coagulation genes and coagulation-related domains were disclosed in a cDNA library of differentially expressed sequence tags (ESTs), prepared for this allorejection process. Serine proteases, especially from the trypsin family, were highly represented among Botryllus library ortholgues and its “molecular function” gene ontology analysis. These, together with the built-up clot-like lesions in the interaction area, led us to further test whether a vertebrate-like clotting system participates in Botryllus innate immunity. Three morphologically distinct clot types (points of rejection; POR) were followed. We demonstrated the specific expression of nine coagulation orthologue transcripts in Botryllus rejection processes and effects of the anti-coagulant heparin on POR formation and heartbeats. In situ hybridization of fibrinogen and von Willebrand factor orthologues elucidated enhanced expression patterns specific to histoincompatible reactions as well as common expressions not augmented by innate immunity. Immunohistochemistry for fibrinogen revealed, in naïve and immune challenged colonies alike, specific antibody binding to a small population of Botryllus compartment cells. Altogether, molecular, physiological and morphological outcomes suggest the involvement of vertebrates-like coagulation elements in urochordate immunity, not assigned with vasculature injury

    Isolation, Cloning and Structural Characterisation of Boophilin, a Multifunctional Kunitz-Type Proteinase Inhibitor from the Cattle Tick

    Get PDF
    Inhibitors of coagulation factors from blood-feeding animals display a wide variety of structural motifs and inhibition mechanisms. We have isolated a novel inhibitor from the cattle tick Boophilus microplus, one of the most widespread parasites of farm animals. The inhibitor, which we have termed boophilin, has been cloned and overexpressed in Escherichia coli. Mature boophilin is composed of two canonical Kunitz-type domains, and inhibits not only the major procoagulant enzyme, thrombin, but in addition, and by contrast to all other previously characterised natural thrombin inhibitors, significantly interferes with the proteolytic activity of other serine proteinases such as trypsin and plasmin. The crystal structure of the bovine α-thrombin·boophilin complex, refined at 2.35 Å resolution reveals a non-canonical binding mode to the proteinase. The N-terminal region of the mature inhibitor, Q16-R17-N18, binds in a parallel manner across the active site of the proteinase, with the guanidinium group of R17 anchored in the S1 pocket, while the C-terminal Kunitz domain is negatively charged and docks into the basic exosite I of thrombin. This binding mode resembles the previously characterised thrombin inhibitor, ornithodorin which, unlike boophilin, is composed of two distorted Kunitz modules. Unexpectedly, both boophilin domains adopt markedly different orientations when compared to those of ornithodorin, in its complex with thrombin. The N-terminal boophilin domain rotates 9° and is displaced by 6 Å, while the C-terminal domain rotates almost 6° accompanied by a 3 Å displacement. The reactive-site loop of the N-terminal Kunitz domain of boophilin with its P1 residue, K31, is fully solvent exposed and could thus bind a second trypsin-like proteinase without sterical restraints. This finding explains the formation of a ternary thrombin·boophilin·trypsin complex, and suggests a mechanism for prothrombinase inhibition in vivo
    corecore