281 research outputs found

    Herschel PACS and SPIRE observations of blazar PKS 1510-089: a case for two blazar zones

    Full text link
    We present the results of observations of blazar PKS 1510-089 with the Herschel Space Observatory PACS and SPIRE instruments, together with multiwavelength data from Fermi/LAT, Swift, SMARTS and SMA. The source was found in a quiet state, and its far-infrared spectrum is consistent with a power-law with a spectral index of alpha ~ 0.7. Our Herschel observations were preceded by two 'orphan' gamma-ray flares. The near-infrared data reveal the high-energy cut-off in the main synchrotron component, which cannot be associated with the main gamma-ray component in a one-zone leptonic model. This is because in such a model the luminosity ratio of the External-Compton and synchrotron components is tightly related to the frequency ratio of these components, and in this particular case an unrealistically high energy density of the external radiation would be implied. Therefore, we consider a well-constrained two-zone blazar model to interpret the entire dataset. In this framework, the observed infrared emission is associated with the synchrotron component produced in the hot-dust region at the supra-pc scale, while the gamma-ray emission is associated with the External-Compton component produced in the broad-line region at the sub-pc scale. In addition, the optical/UV emission is associated with the accretion disk thermal emission, with the accretion disk corona likely contributing to the X-ray emission.Comment: 13 pages, 8 figures, 7 tables; accepted for publication in the Astrophysical Journa

    Tracing colliding winds in the UV line orbital variability of gamma-ray binaries

    Full text link
    Gamma-ray binaries emit most of their radiated power beyond ~10 MeV. The non-thermal emission is thought to arise from the interaction of the relativistic wind of a rotation-powered pulsar with the stellar wind of its massive (O or Be) companion star. A powerful pulsar creates an extended cavity, filled with relativistic electrons, in the radiatively-driven wind of the massive star. As a result, the observed P Cyg profiles of UV resonant lines from the stellar wind should be different from those of single massive stars. We propose to use UV emission lines to detect and constrain the colliding wind region in gamma-ray binaries. We compute the expected orbital variability of P Cyg profiles depending upon the interaction geometry (set by the ratio of momentum fluxes from the winds) and the line-of-sight to the system. We predict little or no variability for the case of LS 5039 and PSR B1259-63, in agreement with currently available HST observations of LS 5039. However, variability between superior and inferior conjunction is expected in the case of LS I+61 303.Comment: Accepted for publication in MNRA

    The Hardness-Intensity Diagram of Cygnus X-3: Revisiting the Radio/X-Ray States

    Full text link
    Cygnus X-3 is one of the brightest X-ray and radio sources in the Galaxy, and is well known for its erratic behaviour in X-rays as well as in the radio, occasionally producing major radio flares associated with relativistic ejections. However, even after many years of observations in various wavelength bands Cyg X-3 still eludes clear physical understanding. Studying different emission bands simultaneously in microquasars has proved to be a fruitful approach towards understanding these systems, especially by shedding light on the accretion disc/jet connection. We continue this legacy by constructing a hardness-intensity diagram (HID) from archival Rossi X-ray Timing Explorer data and linking simultaneous radio observations to it. We find that surprisingly Cyg X-3 sketches a similar shape in the HID to that seen in other transient black hole X-ray binaries during outburst but with distinct differences. Together with the results of this analysis and previous studies of Cyg X-3 we conclude that the X-ray states can be assigned to six distinct states. This categorization relies heavily on the simultaneous radio observations and we identify one new X-ray state, the hypersoft state, similar to the ultrasoft state, which is associated to the quenched radio state during which there is no or very faint radio emission. Recent observations of GeV flux observed from Cyg X-3 (Tavani et al. 2009; Fermi LAT Collaboration et al. 2009) during a soft X-ray and/or radio quenched state at the onset of a major radio flare hint that a very energetic process is at work during this time, which is also when the hypersoft X-ray state is observed. In addition, Cyg X-3 shows flaring with a wide range of hardness.Comment: 17 pages, 9 figures, accepted for publication in MNRA

    On the Interaction of the PKS B1358-113 Radio Galaxy with the Abell 1836 Cluster

    Full text link
    [abridged] Here we present the analysis of multifrequency data gathered for the FRII radio galaxy PKS B1358-113, hosted in the brightest cluster galaxy of Abell 1836. The galaxy harbors one of the most massive black holes known to date and our analysis of the optical data reveals that this black hole is only weakly active. Based on new Chandra and XMM-Newton X-ray observations and archival radio data we derive the preferred range for the jet kinetic luminosity (0.53)×1045\sim (0.5-3) \times 10^{45} erg s1^{-1}. This is above the values implied by various scaling relations proposed for radio sources in galaxy clusters, being instead very close to the maximum jet power allowed for the given accretion rate. We constrain the radio source lifetime as 4070\sim 40-70 Myrs, and the total amount of deposited jet energy (28)×1060\sim (2-8) \times 10^{60}\,ergs. The detailed analysis of the X-ray data provides indication for the presence of a bow-shock driven by the expanding radio lobes into the Abell 1836 cluster environment, with the corresponding Mach number 24\sim 2-4. This, together with the recently growing evidence that powerful FRII radio galaxies may not be uncommon in the centers of clusters at higher redshifts, supports the idea that jet-induced shock heating may indeed play an important role in shaping the properties of clusters, galaxy groups, and galaxies in formation. We speculate on a possible bias against detecting jet-driven shocks in poorer environments, resulting from an inefficient electron heating at the shock front, combined with a relatively long electron-ion equilibration timescale.Comment: Version accepted to Ap

    Rak błony śluzowej macicy u kobiet poniżej 40 roku życia

    Get PDF

    Effects of the stellar wind on X-ray spectra of Cygnus X-3

    Full text link
    We study X-ray spectra of Cyg X-3 from BeppoSAX, taking into account absorption and emission in the strong stellar wind of its companion. We find the intrinsic X-ray spectra are well modelled by disc blackbody emission, its upscattering by hot electrons with a hybrid distribution, and by Compton reflection. These spectra are strongly modified by absorption and reprocessing in the stellar wind, which we model using the photoionization code cloudy. The form of the observed spectra implies the wind is composed of two phases. A hot tenuous plasma containing most of the wind mass is required to account for the observed features of very strongly ionized Fe. Small dense cool clumps filling <0.01 of the volume are required to absorb the soft X-ray excess, which is emitted by the hot phase but not present in the data. The total mass-loss rate is found to be (0.6--1.6) x 10^-5 solar masses per year. We also discuss the feasibility of the continuum model dominated by Compton reflection, which we find to best describe our data. The intrinsic luminosities of our models suggest that the compact object is a black hole.Comment: MNRAS, in pres
    corecore