114 research outputs found

    Laser capture microdissection of intestinal tissue from sea bass larvae using an optimized RNA integrity assay and validated reference genes

    Get PDF
    The increasing demand for a sustainable larviculture has promoted research regarding environmental parameters, diseases and nutrition, intersecting at the mucosal surface of the gastrointestinal tract of fish larvae. The combination of laser capture microdissection (LCM) and gene expression experiments allows cell specific expression profiling. This study aimed at optimizing an LCM protocol for intestinal tissue of sea bass larvae. Furthermore, a 3'/5' integrity assay was developed for LCM samples of fish tissue, comprising low RNA concentrations. Furthermore, reliable reference genes for performing qPCR in larval sea bass gene expression studies were identified, as data normalization is critical in gene expression experiments using RT-qPCR. We demonstrate that a careful optimization of the LCM procedure allows recovery of high quality mRNA from defined cell populations in complex intestinal tissues. According to the geNorm and Normfinder algorithms, ef1a, rpl13a, rps18 and faua were the most stable genes to be implemented as reference genes for an appropriate normalization of intestinal tissue from sea bass across a range of experimental settings. The methodology developed here, offers a rapid and valuable approach to characterize cells/tissues in the intestinal tissue of fish larvae and their changes following pathogen exposure, nutritional/environmental changes, probiotic supplementation or a combination thereof

    Comparison of digital PCR platforms and semi-nested qPCR as a tool to determine the size of the HIV reservoir

    Get PDF
    HIV persists in latently infected cells of patients on antiretroviral therapy (ART). This persistent proviral DNA reservoir is an important predictor of viral rebound upon therapy failure or interruption and forms a major obstacle towards cure. Accurate quantification of the low levels of persisting HIV DNA may aid patient monitoring and cure research. Digital PCR is a promising tool that enables direct absolute quantification with high sensitivity. With recent technological advances, several platforms are available to implement digital PCR in a clinical setting. Here, we compared two digital PCR platforms, the Quantstudio 3D (Life Technologies) and the QX100 (Bio-Rad) with a semi-nested qPCR on serial HIV DNA dilutions and DNA isolated from PBMCs of ART-suppressed patients. All three methods were able to detect target to the lowest levels of 2.5 HIV DNA copies. The QX100 excelled in having the least bias and highest precision, efficiency and quantitative linearity. Patient sample quantifications by the QX100 and semi-nested qPCR were highly agreeable by Bland-Altman analysis (0.01 ± 0.32 log10). Due to the observation of false-positive signals with current digital PCR platforms however, semi-nested qPCR may still be preferred in a setup of low quantity detection to discriminate between presence or absence of HIV DNA

    The complex TIE between macrophages and angiogenesis

    Get PDF
    Macrophages are primarily known as phagocytic immune cells, but they also play a role in diverse processes, such as morphogenesis, homeostasis and regeneration. In this review, we discuss the influence of macrophages on angiogenesis, the process of new blood vessel formation from the pre-existing vasculature. Macrophages play crucial roles at each step of the angiogenic cascade, starting from new blood vessel sprouting to the remodelling of the vascular plexus and vessel maturation. Macrophages form promising targets for both pro- and anti-angiogenic treatments. However, to target macrophages, we will first need to understand the mechanisms that control the functional plasticity of macrophages during each of the steps of the angiogenic cascade. Here, we review recent insights in this topic. Special attention will be given to the TIE2-expressing macrophage (TEM), which is a subtype of highly angiogenic macrophages that is able to influence angiogenesis via the angiopoietin-TIE pathway

    The Digital MIQE Guidelines Update: Minimum Information for Publication of Quantitative Digital PCR Experiments for 2020

    Get PDF
    Digital PCR (dPCR) has developed considerably since the publication of the Minimum Information for Publication of Digital PCR Experiments (dMIQE) guidelines in 2013, with advances in instrumentation, software, applications, and our understanding of its technological potential. Yet these developments also have associated challenges; data analysis steps, including threshold setting, can be difficult and preanalytical steps required to purify, concentrate, and modify nucleic acids can lead to measurement error. To assist independent corroboration of conclusions, comprehensive disclosure of all relevant experimental details is required. To support the community and reflect the growing use of dPCR, we present an update to dMIQE, dMIQE2020, including a simplified dMIQE table format to assist researchers in providing key experimental information and understanding of the associated experimental process. Adoption of dMIQE2020 by the scientific community will assist in standardizing experimental protocols, maximize efficient utilization of resources, and further enhance the impact of this powerful technology

    Socioeconomic status and changes in body mass from 3 to 5 years

    No full text
    The influence of social status on the development of body mass was analysed in a retrospective cohort study of 675 Belgian children monitored between the ages of 3 and 5 years by the preventive medical services in Brussels. At age 3, no association between excess weight and social status was observed. Adiposity rebound before age 5 was inversely related to body mass at age 3 and was independent of social status. The social influences on obesity observed in adolescence cannot be explained by a higher frequency of early adiposity rebound in children of low socioeconomic status.

    corecore