25 research outputs found

    KLHL3

    No full text

    Reelin and Notch1 Cooperate in the Development of the Dentate Gyrus

    No full text
    The development of the hippocampal dentate gyrus is a complex process in which several signaling pathways are involved and likely interact with each other. The extracellular matrix molecule Reelin is necessary both for normal development of the dentate gyrus radial glia and neuronal migration. In Reelin-deficient Reeler mice, the hippocampal radial glial scaffold fails to form, and granule cells are dispersed throughout the dentate gyrus. Here, we show that both formation of the radial glia scaffold and lamination of the dentate gyrus depend on intact Notch signaling. Inhibition of Notch signaling in organotypic hippocampal slice cultures induced a phenotype reminiscent of the Reelin-deficient hippocampus, i.e., a reduced density of radial glia fibers and granule cell dispersion. Moreover, a Reelin-dependent rescue of the Reeler phenotype was blocked by inhibition of Notch activation. In the Reeler dentate gyrus, we found reduced Notch1 signaling; the activated Notch intracellular domain as well as the transcriptional targets, brain lipid-binding protein, and Hes5 are decreased. Disabled1, a component of the Reelin-signaling pathway colocalizes with Notch1, thus indicating a direct interaction between the Reelin- and Notch1-signaling pathways. These results suggest that Reelin enhances Notch1 signaling, thereby contributing to the formation of the radial glial scaffold and the normal development of the dentate gyrus

    Circuit-wide Transcriptional Profiling Reveals Brain Region-Specific Gene Networks Regulating Depression Susceptibility

    No full text
    Depression is a complex, heterogeneous disorder and a leading contributor to the global burden of disease. Most previous research has focused on individual brain regions and genes contributing to depression. However, emerging evidence in humans and animal models suggests that dysregulated circuit function and gene expression across multiple brain regions drive depressive phenotypes. Here we performed RNA-sequencing on 4 brain regions from control animals and those susceptible or resilient to chronic social defeat stress at multiple time points. We employed an integrative network biology approach to identify transcriptional networks and key driver genes that regulate susceptibility to depressive-like symptoms. Further, we validated in vivo several key drivers and their associated transcriptional networks that regulate depression susceptibility and confirmed their functional significance at the levels of gene transcription, synaptic regulation and behavior. Our study reveals novel transcriptional networks that control stress susceptibility and offers fundamentally new leads for antidepressant drug discovery
    corecore