335 research outputs found

    Optimal dynamic control of invasions: applying a systematic conservation approach

    Get PDF
    The social, economic, and environmental impacts of invasive plants are well recognized. However, these variable impacts are rarely accounted for in the spatial prioritization of funding for weed management. We examine how current spatially explicit prioritization methods can be extended to identify optimal budget allocations to both eradication and control measures of invasive species to minimize the costs and likelihood of invasion. Our framework extends recent approaches to systematic prioritization of weed management to account for multiple values that are threatened by weed invasions with a multi-year dynamic prioritization approach. We apply our method to the northern portion of the Daly catchment in the Northern Territory, which has significant conservation values that are threatened by gamba grass (Andropogon gayanus), a highly invasive species recognized by the Australian government as a Weed of National Significance (WONS). We interface Marxan, a widely applied conservation planning tool, with a dynamic biophysical model of gamba grass to optimally allocate funds to eradication and control programs under two budget scenarios comparing maximizing gain (MaxGain) and minimizing loss (MinLoss) optimization approaches. The prioritizations support previous findings that a MinLoss approach is a better strategy when threats are more spatially variable than conservation values. Over a 10-year simulation period, we find that a MinLoss approach reduces future infestations by ~8% compared to MaxGain in the constrained budget scenarios and ~12% in the unlimited budget scenarios. We find that due to the extensive current invasion and rapid rate of spread, allocating the annual budget to control efforts is more efficient than funding eradication efforts when there is a constrained budget. Under a constrained budget, applying the most efficient optimization scenario (control, minloss) reduces spread by ~27% compared to no control. Conversely, if the budget is unlimited it is more efficient to fund eradication efforts and reduces spread by ~65% compared to no control

    The influence of electrolyte identity upon the electro-reduction of CO2

    Get PDF
    AbstractThe influence of supporting electrolyte cations on the voltammetric behaviour and product distribution in N-methylpyrrolidone-based carbon dioxide electroreduction systems is investigated. The reduction potentials associated with TBABF4 (0.1M) and corresponding alkali metal (M+) electrolytes; LiBF4, NaBF4 and RbBF4 (focussing mainly on the reduction of the widely employed Li+ species) were established in both the presence and absence of CO2 at polycrystalline noble metal working electrodes. In situ and ex situ Raman spectroscopy, X-ray photoelectron spectroscopy, scanning electron microscopy and qualitative element identification via flame testing were used to aid the assignment of reduction processes. It was established that CO2 reduction products in the metal cationic systems were formed at a much less negative potential than those found with the non-metal cation (−1.5V vs. Ferrocene, c.f. −2.2V), however the resultant alteration of the surface environment was found to deactivate the electrode to further CO2 reduction. The presence of CO2 in solution was found to affect the potential required for the bulk deposition of metal from the electrolyte through the same process. Where TBA+ and M+ were employed simultaneously in the system, the resultant voltammetry shared the majority of features with the pure M+ system with CO2 reduction suppressed at more negative potentials therefore supporting the conclusion that any ‘catalytic effect’ associated with TBA+ is in fact a lack of deactivation given by the M+ system, rather than any enhancement offered by the former

    Some Cytological Observations on Peripheral Myelinated Nerve Fibers as Observed by the Polarized Light Method

    Get PDF
    Author Institution: Department of Anatomy, The Ohio State Universit

    Invasive Andropogon gayanus (gamba grass) is an ecosystem transformer of nitrogen relations in Australian savanna

    Get PDF
    The African grass Andropogon gayanus Kunth. is invading Australian savannas, altering their ecological and biogeochemical function. To assess impacts on nitrogen (N) cycling, we quantified litter decomposition and N dynamics of grass litter in native grass and A. gayanus invaded savanna using destructive in situ grass litter harvests and litterbag incubations (soil surface and aerial position). Only 30% of the A. gayanus in situ litter decomposed, compared to 61% of the native grass litter, due to the former being largely comprised of highly resistant A. gayanus stem. In contrast to the stem, A. gayanus leaf decomposition was approximately 3- and 2-times higher than the dominant native grass, Alloteropsis semilata at the surface and aerial position, respectively. Lower initial lignin concentrations, and higher consumption by termites, accounted for the greater surface decomposition rate of A. gayanus. N flux estimates suggest the N release of A. gayanus litter is insufficient to compensate for increased N uptake and N loss via fire in invaded plots. Annually burnt invaded savanna may lose up to 8.2% of the upper soil N pool over a decade. Without additional inputs via biological N fixation, A. gayanus invasion is likely to diminish the N capital of Australia's frequently burnt savannas

    When to Use Transdisciplinary Approaches for Environmental Research

    Get PDF
    Transdisciplinary research (TDR) can help generate solutions to environmental challenges and enhance the uptake of research outputs, thus contributing to advance sustainability in social-ecological systems. Our aim is to support investment decisions in TDR; more specifically, to help funders, researchers, and research users to decide when and why it is most likely to be worth investing in TDR approaches. To achieve our aim, we: 1) define TDR and use a decision tree comparing it with alternative modes of research (i.e., basic, applied, disciplinary, multi-disciplinary, and interdisciplinary research) to help researchers and funders distinguish TDR from other research modes; 2) identify features of the research problem and context (complexity, diverse knowledge systems, contestation, power imbalance, and disagreement on the need for transformative change) where a TDR approach could be more appropriate than the alternative research modes; and 3) explore the idea that the intensity of the contextual features in (2), together with the problem at hand, will help determine where a research project stands in a continuum from low- to high-TDR. We present five studies exemplifying lower- to higher-TDR approaches that are distinguished by: 1) the number and variety of research participants engaged; 2) the strength of involvement of non-academic actors; and 3) the number and variety of disciplines and knowledge systems involved in the research
    • …
    corecore