646 research outputs found

    Senescence and immortality in hepatocellular carcinoma

    Get PDF
    Cataloged from PDF version of article.Cellular senescence is a process leading to terminal growth arrest with characteristic morphological features. This process is mediated by telomere-dependent, oncogene-induced and ROS-induced pathways, but persistent DNA damage is the most common cause. Senescence arrest is mediated by p16(INK4a)- and p21(Cip1)-dependent pathways both leading to retinoblastoma protein (pRb) activation. p53 plays a relay role between DNA damage sensing and p21(Cip1) activation. pRb arrests the cell cycle by recruiting proliferation genes to facultative heterochromatin for permanent silencing. Replicative senescence that occurs in hepatocytes in culture and in liver cirrhosis is associated with lack of telomerase activity and results in telomere shortening. Hepatocellular carcinoma (HCC) cells display inactivating mutations of p53 and epigenetic silencing of p16(INK4a). Moreover, they re-express telomerase reverse transcriptase required for telomere maintenance. Thus, senescence bypass and cellular immortality is likely to contribute significantly to HCC development. Oncogene-induced senescence in premalignant lesions and reversible immortality of cancer cells including HCC offer new potentials for tumor prevention and treatment. (C) 2008 Elsevier Ireland Ltd. All rights reserved

    Pluronic polymer capped biocompatible mesoporous silica nanocarriers

    Get PDF
    A facile self-assembly method is described to prepare PEGylated silica nanocarriers using hydrophobic mesoporous silica nanoparticles and a pluronic F127 polymer. Pluronic capped nanocarriers revealed excellent dispersibility in biological media with cyto- and blood compatibilities. © 2013 The Royal Society of Chemistry

    High-Dimensional Fixed Effects Profiling Models and Applications in End-Stage Kidney Disease Patients: Current State and Future Directions

    Get PDF
    Profiling analysis aims to evaluate health care providers, including hospitals, nursing homes, or dialysis facilities among others with respect to a patient outcome, such as 30-day unplanned hospital readmission or mortality. Fixed effects (FE) profiling models have been developed over the last decade, motivated by the overall need to (a) improve accurate identification or “flagging” of under-performing providers, (b) relax assumptions inherent in random effects (RE) profiling models, and (c) take into consideration the unique disease characteristics and care/treatment processes of end-stage kidney disease (ESKD) patients on dialysis. In this paper, we review the current state of FE methodologies and their rationale in the ESKD population and illustrate applications in four key areas: profiling dialysis facilities for (1) patient hospitalizations over time (longitudinally) using standardized dynamic readmission ratio (SDRR), (2) identification of dialysis facility characteristics (e.g., staffing level) that contribute to hospital readmission, and (3) adverse recurrent events using standardized event ratio (SER). Also, we examine the operating characteristics with a focus on FE profiling models. Throughout these areas of applications to the ESKD population, we identify challenges for future research in both methodology and clinical studies

    Inhibition of Akt signaling in hepatoma cells induces apoptotic cell death independent of Akt activation status

    Get PDF
    Cataloged from PDF version of article.The serine/threonine kinase Akt, a downstream effector of phosphatidylinositol 3-kinase (PI3K), is involved in cell survival and anti-apoptotic signaling. Akt has been shown to be constitutively expressed in a variety of human tumors including hepatocellular carcinoma (HCC). In this report we analyzed the status of Akt pathway in three HCC cell lines, and tested cytotoxic effects of Akt pathway inhibitors LY294002, Wortmannin and Inhibitor VIII. In Mahlavu human hepatoma cells Akt was constitutively activated, as demonstrated by its Ser473 phosphorylation, downstream hyperphosphorylation of BAD on Ser136, and by a specific cell-free kinase assay. In contrast, Huh7 and HepG2 did not show hyperactivation when tested by the same criteria. Akt enzyme hyperactivation in Mahlavu was associated with a loss of PTEN protein expression. Akt signaling was inhibited by the upstream kinase inhibitors, LY294002, Wortmannin, as well as by the specific Akt Inhibitor VIII in all three hepatoma cell lines. Cytotoxicity assays with Akt inhibitors in the same cell lines indicated that they were all sensitive, but with different IC50 values as assayed by RT-CES. We also demonstrated that the cytotoxic effect was through apoptotic cell death. Our findings provide evidence for its constitutive activation in one HCC cell line, and that HCC cell lines, independent of their Akt activation status respond to Akt inhibitors by apoptotic cell death. Thus, Akt inhibition may be considered as an attractive therapeutic intervention in liver cancer. © Springer Science+Business Media, LLC 2010

    Development of a monolithic-like precast beam-column moment connection: Experimental and analytical investigation

    Get PDF
    This study aims to develop a novel monolithic-like precast beam-column connection for reinforced concrete (RC) structures. The proposed connection system has several advantages such as rapid assembly and disassembly, reusability, and replaceability if damaged during an earthquake event. An experimental investigation was first carried out to determine the seismic performance of the proposed connections. In total, six full-scale precast and monolithic T-shape beam-column connection specimens with different reinforcement ratios, specimen dimensions and detailing were tested under displacement controlled cyclic loading, while the axial load on the column was kept constant. The cyclic behaviour, curvature distribution, failure mode, energy dissipation capacity and ductility of the specimens were obtained using the experimental outputs. Detailed non-linear finite element (FE) models were then developed using ABAQUS. It is shown that the FE models can accurately predict the overall performance of the precast connections in terms of initial stiffness, lateral load-bearing capacity and post-peak behaviour. The results indicate that, in general, the precast connections exhibited considerably higher (up to 34%) ductility and ultimate drift ratio (deformability) compared to similar monolithic connections. For the same drift ratio, monolithic connections exhibited slightly higher (on average 10%) energy dissipation capacity, while the precast connections generally dissipated higher energy at their ultimate point (post-peak lateral drift corresponding to 15% loss in lateral strength). It is demonstrated that the monolithic-like precast connections can satisfy the ACI 318-14 acceptance criteria, while they also sustain the ASCE 41-17 Collapse Prevention (CP) limits. Therefore, the proposed connection system is considered to be suitable for RC structures in seismic regions

    Dose- and time-dependent expression patterns of zebrafish orthologs of selected E2F target genes in response to serum starvation/replenishment

    Get PDF
    Targets of E2F transcription factors effectively regulate the cell cycle from worms to humans. Furthermore, the dysregulation of E2F transcription modules plays a highly conserved role in cancers of human and zebrafish. Studying E2F target expression under a given cellular state, such as quiescence, might lead to a better understanding of the conserved patterns of expression in different taxa. In the present study, we used literature searches and phylogeny to identify several targets of E2F transcription factors that are known to be serum-responsive; namely, PCNA, MYBL2, MCM7, TYMS, and CTGF. The transcriptional serum response of zebrafish orthologs of these genes were quantified under different doses (i.e., 0, 0.1, 1, 3, and 10% FBS) and time points (i.e., 6, 24 and 48 hours, h) using quantitative RT-PCR (qRT-PCR) in the zebrafish fibroblast cells (ZF4). Our results indicated that mRNA expression of zebrafish pcna, mybl2, mcm7 and tyms drastically decreased while that of ctgf increased with decreasing serum levels as observed in mammals. These genes responded to serum starvation at 24 and 48 h and to the mitogenic stimuli as early as 6 h except for ctgf whose expression was significantly altered at 24 h. The zebrafish Mcm7 protein levels also were modulated by serum starvation/ replenishment. The present study provides a foundation for the comparative analysis of quantitative expression patterns for genes involved in regulation of cell cycle using a zebrafish serum response model. © Springer Science+Business Media B.V. 2010
    corecore