348 research outputs found

    Chemotherapy-mediated p53-dependent DNA damage response in clear cell renal cell carcinoma: role of the mTORC1/2 and hypoxia-inducible factor pathways.

    Get PDF
    The DNA-damaging agent camptothecin (CPT) and its analogs demonstrate clinical utility for the treatment of advanced solid tumors, and CPT-based nanopharmaceuticals are currently in clinical trials for advanced kidney cancer; however, little is known regarding the effects of CPT on hypoxia-inducible factor-2α (HIF-2α) accumulation and activity in clear cell renal cell carcinoma (ccRCC). Here we assessed the effects of CPT on the HIF/p53 pathway. CPT demonstrated striking inhibition of both HIF-1α and HIF-2α accumulation in von Hippel-Lindau (VHL)-defective ccRCC cells, but surprisingly failed to inhibit protein levels of HIF-2α-dependent target genes (VEGF, PAI-1, ET-1, cyclin D1). Instead, CPT induced DNA damage-dependent apoptosis that was augmented in the presence of pVHL. Further analysis revealed CPT regulated endothelin-1 (ET-1) in a p53-dependent manner: CPT increased ET-1 mRNA abundance in VHL-defective ccRCC cell lines that was significantly augmented in their VHL-expressing counterparts that displayed increased phosphorylation and accumulation of p53; p53 siRNA suppressed CPT-induced increase in ET-1 mRNA, as did an inhibitor of ataxia telangiectasia mutated (ATM) signaling, suggesting a role for ATM-dependent phosphorylation of p53 in the induction of ET-1. Finally, we demonstrate that p53 phosphorylation and accumulation is partially dependent on mTOR activity in ccRCC. Consistent with this result, pharmacological inhibition of mTORC1/2 kinase inhibited CPT-mediated ET-1 upregulation, and p53-dependent responses in ccRCC. Collectively, these data provide mechanistic insight into the action of CPT in ccRCC, identify ET-1 as a p53-regulated gene and demonstrate a requirement of mTOR for p53-mediated responses in this tumor type

    The effects of type 1 diabetes and diabetic peripheral neuropathy on the musculoskeletal system : a case–control study

    Get PDF
    Fracture risk is increased in type 1 diabetes (T1D). Diabetic neuropathy might contribute to this increased risk directly through effects on bone turnover and indirectly through effects on balance, muscle strength, and gait. We compared patients with T1D with (T1DN+, n = 20) and without (T1DN−, n = 20) distal symmetric sensorimotor polyneuropathy and controls (n = 20). We assessed areal bone mineral density (aBMD) and appendicular muscle mass by dual-energy X-ray absorptiometry, microarchitecture by high-resolution peripheral quantitative tomography at the standard ultra-distal site and at an exploratory 14% bone length site at the tibia and radius, bone turnover markers, and muscle strength, gait, and balance by Short Physical Performance Battery (SPPB). At the standard ultra-distal site, tibial cortical porosity was 56% higher in T1DN+ compared with T1DN− (p = .009) and correlated positively with the severity of neuropathy (Toronto Clinical Neuropathy Score; r = 0.347, p = .028) and negatively with nerve conduction amplitude and velocity (r = −0.386, p = .015 and r = −0.358, p = .025, respectively). Similar negative correlations were also observed at the radius (r = −0.484, p = .006 and r = −0.446, p = .012, respectively). At the exploratory 14% offset site (less distal), we found higher trabecular volumetric BMD (tibia 25%, p = .024; radius 46%, p = .017), trabecular bone volume (tibia 25%, p = .023; radius 46%, p = .017), and trabecular number (tibia 22%, p = .014; radius 30%, p = .010) in T1DN– compared with controls. Both CTX and PINP were lower in participants with TD1 compared with controls. No difference was found in aBMD and appendicular muscle mass. T1DN+ had worse performance in the SPPB compared with T1DN– and control. In summary, neuropathy was associated with cortical porosity and worse performance in physical tests. Our findings suggest that bone structure does not fully explain the rate of fractures in T1D. We conclude that the increase in the risk of fractures in T1D is multifactorial with both skeletal and non-skeletal contributions

    Climacteric fruit ripening: Ethylene-dependent and independent regulation of ripening pathways in melon fruit

    Get PDF
    Cantaloupe melons have a typical climacteric behaviour with ethylene playing a major role in the regulation of the ripening process and affecting the ripening rate. Crossing of Cantaloupe Charentais melon with a non-climacteric melon indicated that the climacteric character is genetically dominant and conferred by two duplicated loci only. However, other experiments made by crossing two non-climacteric melons have generated climacteric fruit, indicating that different and complex genetic regulation exists for the climacteric character. Suppression of ethylene production by antisense ACC oxidase RNA in Charentais melon has shown that, while many ripening pathways were regulated by ethylene (synthesis of aroma volatiles, respiratory climacteric and degreening of the rind), some were ethylene-independent (initiation of climacteric, sugar accumulation, loss of acidity and coloration of the pulp). Softening of the flesh comprised both ethylene-dependent and independent components that were correlated with differential regulation of cell wall degrading genes. These results indicate that climacteric (ethylene-dependent) and non-climacteric (ethylene-independent) regulation coexist during climacteric fruit ripening. In addition, ethylenesuppressed melons allowed demonstrating that the various ethylene-dependent events exhibited differential sensitivity to ethylene and that ethylene was promoting sensitivity to chilling injury. Throughout this review, the data generated with melon are compared with those obtained with tomato and other fruit

    Heat shock protein expression analysis in canine osteosarcoma reveals HSP60 as a potentially relevant therapeutic target

    Get PDF
    Heat shock proteins (HSP) are highly conserved across eukaryotic and prokaryotic species. These proteins play a role in response to cellular stressors, protecting cells from damage and facilitating recovery. In tumor cells, HSPs can have cytoprotective effects and interfere with apoptotic cascades. This study was performed to assess the prognostic and predictive values of the gene expression of HSP family members in canine osteosarcoma (OS) and their potential for targeted therapy. Gene expressions for HSP were assessed using quantitative PCR (qPCR) on 58 snap-frozen primary canine OS tumors and related to clinic-pathological parameters. A significant increased expression of HSP60 was found in relation to shorter overall survival and an osteoblastic phenotype. Therefore, the function of HSP60 was investigated in more detail. Immunohistochemical analysis revealed heterogeneous staining for HSP60 in tumors. The highest immunoreactivity was found in tumors of short surviving dogs. Next HSP expression was shown in a variety of canine and human OS cell lines by qPCR and Western blot. In two highly metastatic cell lines HSP60 expression was silenced using siRNA resulting in decreased cell proliferation and induction of apoptosis in both cell lines. It is concluded that overexpression of HSP60 is associated with a poor prognosis of OS and should be evaluated as a new target for therapy

    Developing mHealth Apps with researchers: multi-stakeholder design considerations

    Get PDF
    The authors have been involved with developing a number of mHealth smartphone Apps for use in health or wellness research in collaboration with researchers, clinicians and patient groups for clinical areas including Sickle Cell Disease, Attention Deficit Hyperactivity Disorder, asthma and infertility treatment. In these types of applications, end-users self-report their symptoms and quality of life or conduct psychometric tests. Physiological data may also be captured using sensors that are internal or external to the device. Following a discussion of the multiple stakeholders that are typically involved in small scale research projects involving end-user data collection, four Apps are used as case studies to explore the issue of non-functional requirements

    Nerve and vascular biomarkers in skin biopsies differentiate painful from painless peripheral neuropathy in type 2 diabetes

    Get PDF
    Painful diabetic peripheral neuropathy can be intractable with a major impact, yet the underlying pain mechanisms remain uncertain. A range of neuronal and vascular biomarkers was investigated in painful diabetic peripheral neuropathy (painful-DPN) and painless-DPN and used to differentiate painful-DPN from painless-DPN. Skin biopsies were collected from 61 patients with type 2 diabetes (T2D), and 19 healthy volunteers (HV). All subjects underwent detailed clinical and neurophysiological assessments. Based on the neuropathy composite score of the lower limbs [NIS(LL)] plus seven tests, the T2D subjects were subsequently divided into three groups: painful-DPN (n = 23), painless-DPN (n = 19), and No-DPN (n = 19). All subjects underwent punch skin biopsy, and immunohistochemistry used to quantify total intraepidermal nerve fibers (IENF) with protein gene product 9.5 (PGP9.5), regenerating nerve fibers with growth-associated protein 43 (GAP43), peptidergic nerve fibers with calcitonin gene-related peptide (CGRP), and blood vessels with von Willebrand Factor (vWF). The results showed that IENF density was severely decreased (p < 0.001) in both DPN groups, with no differences for PGP9.5, GAP43, CGRP, or GAP43/PGP9.5 ratios. There was a significant increase in blood vessel (vWF) density in painless-DPN and No-DPN groups compared to the HV group, but this was markedly greater in the painful-DPN group, and significantly higher than in the painless-DPN group (p < 0.0001). The ratio of sub-epidermal nerve fiber (SENF) density of CGRP:vWF showed a significant decrease in painful-DPN vs. painless-DPN (p = 0.014). In patients with T2D with advanced DPN, increased dermal vasculature and its ratio to nociceptors may differentiate painful-DPN from painless-DPN. We hypothesized that hypoxia-induced increase of blood vessels, which secrete algogenic substances including nerve growth factor (NGF), may expose their associated nociceptor fibers to a relative excess of algogens, thus leading to painful-DPN

    Central Pain Processing in Chronic Chemotherapy-Induced Peripheral Neuropathy: A Functional Magnetic Resonance Imaging Study

    Get PDF
    Life expectancy in multiple myeloma has significantly increased. However, a high incidence of chemotherapy induced peripheral neuropathy (CIPN) can negatively influence quality of life during this period. This study applied functional magnetic resonance imaging (fMRI) to compare areas associated with central pain processing in patients with multiple myeloma who had chemotherapy induced peripheral neuropathy (MM-CIPN) with those from healthy volunteers (HV). Twenty-four participants (n = 12 MM-CIPN, n = 12 HV) underwent Blood Oxygen Level-Dependent (BOLD) fMRI at 3T whilst noxious heat-pain stimuli were applied to the foot and then thigh. Patients with MM-CIPN demonstrated greater activation during painful stimulation in the precuneus compared to HV (p = 0.014, FWE-corrected). Patients with MM-CIPN exhibited hypo-activation of the right superior frontal gyrus compared to HV (p = 0.031, FWE-corrected). Significant positive correlation existed between the total neuropathy score (reduced version) and activation in the frontal operculum (close to insular cortex) during foot stimulation in patients with MM-CIPN (p = 0.03, FWE-corrected; adjusted R2 = 0.87). Painful stimuli delivered to MM-CIPN patients evoke differential activation of distinct cortical regions, reflecting a unique pattern of central pain processing compared with healthy volunteers. This characteristic activation pattern associated with pain furthers the understanding of the pathophysiology of painful chemotherapy induced peripheral neuropathy. Functional MRI provides a tool for monitoring cerebral changes during anti-cancer and analgesic treatment

    Somatosensory network functional connectivity differentiates clinical pain phenotypes in diabetic neuropathy

    Get PDF
    Aims/hypothesis The aim of this work was to investigate whether different clinical pain phenotypes of diabetic polyneuropathy (DPN) are distinguished by functional connectivity at rest. Methods This was an observational, cohort study of 43 individuals with painful DPN, divided into irritable (IR, n = 10) and non-irritable (NIR, n = 33) nociceptor phenotypes using the German Research Network of Neuropathic Pain quantitative sensory testing protocol. In-situ brain MRI included 3D T1-weighted anatomical and 6 min resting-state functional MRI scans. Subgroup differences in resting-state functional connectivity in brain regions involved with somatic (thalamus, primary somatosensory cortex, motor cortex) and non-somatic (insular and anterior cingulate cortices) pain processing were examined. Multidimensional reduction of MRI datasets was performed using a machine-learning approach to classify individuals into each clinical pain phenotype. Results Individuals with the IR nociceptor phenotype had significantly greater thalamic–insular cortex (p false discovery rate [FDR] = 0.03) and reduced thalamus–somatosensory cortex functional connectivity (p-FDR = 0.03). We observed a double dissociation such that self-reported neuropathic pain score was more associated with greater thalamus–insular cortex functional connectivity (r = 0.41; p = 0.01) whereas more severe nerve function deficits were more related to lower thalamus–somatosensory cortex functional connectivity (r = −0.35; p = 0.03). Machine-learning group classification performance to identify individuals with the NIR nociceptor phenotype achieved an accuracy of 0.92 (95% CI 0.08) and sensitivity of 90%. Conclusions/interpretation This study demonstrates differences in functional connectivity in nociceptive processing brain regions between IR and NIR phenotypes in painful DPN. We also establish proof of concept for the utility of multimodal MRI as a biomarker for painful DPN by using a machine-learning approach to classify individuals into sensory phenotypes
    corecore