22 research outputs found

    An improved model to study tumor cell autonomous metastasis programs using MTLn3 cells and the Rag2−/− γc−/− mouse

    Get PDF
    The occurrence of metastases is a critical determinant of the prognosis for breast cancer patients. Effective treatment of breast cancer metastases is hampered by a poor understanding of the mechanisms involved in the formation of these secondary tumor deposits. To study the processes of metastasis, valid in vivo tumor metastasis models are required. Here, we show that increased expression of the EGF receptor in the MTLn3 rat mammary tumor cell-line is essential for efficient lung metastasis formation in the Rag mouse model. EGFR expression resulted in delayed orthotopic tumor growth but at the same time strongly enhanced intravasation and lung metastasis. Previously, we demonstrated the critical role of NK cells in a lung metastasis model using MTLn3 cells in syngenic F344 rats. However, this model is incompatible with human EGFR. Using the highly metastatic EGFR-overexpressing MTLn3 cell-line, we report that only Rag2−/−γc−/− mice, which lack NK cells, allow efficient lung metastasis from primary tumors in the mammary gland. In contrast, in nude and SCID mice, the remaining innate immune cells reduce MTLn3 lung metastasis formation. Furthermore, we confirm this finding with the orthotopic transplantation of the 4T1 mouse mammary tumor cell-line. Thus, we have established an improved in vivo model using a Rag2−/− γc−/− mouse strain together with MTLn3 cells that have increased levels of the EGF receptor, which enables us to study EGFR-dependent tumor cell autonomous mechanisms underlying lung metastasis formation. This improved model can be used for drug target validation and development of new therapeutic strategies against breast cancer metastasis formation

    Review of the literature and suggestions for the design of rodent survival studies for the identification of compounds that increase health and life span

    Get PDF
    Much of the literature describing the search for agents that increase the life span of rodents was found to suffer from confounds. One-hundred-six studies, absent 20 contradictory melatonin studies, of compounds or combinations of compounds were reviewed. Only six studies reported both life span extension and food consumption data, thereby excluding the potential effects of caloric restriction. Six other studies reported life span extension without a change in body weight. However, weight can be an unreliable surrogate measure of caloric consumption. Twenty studies reported that food consumption or weight was unchanged, but it was unclear whether these data were anecdotal or systematic. Twenty-nine reported extended life span likely due to induced caloric restriction. Thirty-six studies reported no effect on life span, and three a decrease. The remaining studies suffer from more serious confounds. Though still widely cited, studies showing life span extension using short-lived or “enfeebled” rodents have not been shown to predict longevity effects in long-lived animals. We suggest improvements in experimental design that will enhance the reliability of the rodent life span literature. First, animals should receive measured quantities of food and its consumption monitored, preferably daily, and reported. Weights should be measured regularly and reported. Second, a genetically heterogeneous, long-lived rodent should be utilized. Third, chemically defined diets should be used. Fourth, a positive control (e.g., a calorically restricted group) is highly desirable. Fifth, drug dosages should be chosen based on surrogate endpoints or accepted cross-species scaling factors. These procedures should improve the reliability of the scientific literature and accelerate the identification of longevity and health span-enhancing agents

    Patient-derived xenograft (PDX) models in basic and translational breast cancer research

    Get PDF
    Patient-derived xenograft (PDX) models of a growing spectrum of cancers are rapidly supplanting long-established traditional cell lines as preferred models for conducting basic and translational preclinical research. In breast cancer, to complement the now curated collection of approximately 45 long-established human breast cancer cell lines, a newly formed consortium of academic laboratories, currently from Europe, Australia, and North America, herein summarizes data on over 500 stably transplantable PDX models representing all three clinical subtypes of breast cancer (ER+, HER2+, and "Triple-negative" (TNBC)). Many of these models are well-characterized with respect to genomic, transcriptomic, and proteomic features, metastatic behavior, and treatment response to a variety of standard-of-care and experimental therapeutics. These stably transplantable PDX lines are generally available for dissemination to laboratories conducting translational research, and contact information for each collection is provided. This review summarizes current experiences related to PDX generation across participating groups, efforts to develop data standards for annotation and dissemination of patient clinical information that does not compromise patient privacy, efforts to develop complementary data standards for annotation of PDX characteristics and biology, and progress toward "credentialing" of PDX models as surrogates to represent individual patients for use in preclinical and co-clinical translational research. In addition, this review highlights important unresolved questions, as well as current limitations, that have hampered more efficient generation of PDX lines and more rapid adoption of PDX use in translational breast cancer research

    Erbium-doped yttrium aluminium garnet laser–assisted access osteotomy for maxillary sinus elevation: a human and animal cadaver study

    Full text link
    OBJECTIVE: To evaluate the usability of a variable square pulse (VSP) erbium-doped yttrium aluminium garnet (Er:YAG) laser for a lateral access osteotomy to the maxillary sinus in the course of a sinus elevation procedure. MATERIALS AND METHODS: In six formalin-fixed human heads and six fresh sheep heads, a VSP Er:YAG laser was used to perform a bilateral maxillary access osteotomy. For the osteotomies, the Er:YAG laser was applied with a pulse energy of 1000 mJ, a pulse duration of 300 mus, and a frequency of 12 Hz. The spot size was 0.9 mm, and the handpiece was kept approximately 10 mm from the bone surface. RESULTS: In all 24 sites investigated, the Er:YAG laser osteotomy was possible without any visible carbonization or thermal damage. The average time required for laser osteotomy for 12 standardized rectangular lateral windows in human cadavers was 39 s. No anatomical structures limited laser osteotomy, yet a critical evaluation of any membrane perforations was not possible because the postmortem fixation method caused partial detachment and fractional destruction. Laser-access osteotomy in six fresh sheep heads (12 sites) revealed major disruptions and perforations (<8 mm) of the sinus membrane (100%). CONCLUSION: Even though VSP Er:YAG laser osteotomy showed convincing results for efficient bone cutting without thermal damage, applied laser parameters do not seem to be practicable for any clinical sinus elevation procedure. Missing depth control resulted in uncontrollable severe damage of the underlying membrane

    Treatment and re-characterization of mouse obstructive genitourinary syndrome

    No full text
    We aimed to characterize and to explore a treatment for a condition in which male mice exhibited a solid bulge in the preputial area and an inability to breed. Twenty-seven mice from several animal housing institutions in Spain were included in this study for microbiological and pathological characterization of this condition. The condition mostly affected breeding animals and was associated with the C57BL/6J genetic background. A solid, yellowish-white substance was found inside the prepuce, which displaced the penis cranially, preventing its externalization and limiting the animal's capacity to breed. This pattern was almost identical to that of post-coital vaginal plugs, suggesting that the blocking substance originated from ejaculate. Opposite to what was suggested in previous publications, the penis was completely intact in all of the cases, with no signs of mutilation or wounds. Based on our findings, we developed a surgical technique to clear the prepuce and recover breeding performance, which we tested in 15 other mice with the condition. We eliminated the blocking substance and recurrence of the condition by surgically opening the prepuce, and most of the animals recovered fertility.Peer reviewe
    corecore