533 research outputs found

    Correlation between capillary oxygen saturation and small intestinal wall thickness in the equine colic patient

    Get PDF
    The surgical evaluation of haemorrhagic infarcted intestine and the decision for or against bowel resection require a lot of experience and are subjective. The aim of this prospective, clinical study was to examine the correlation between oxygen saturation and small intestinal wall (IW) thickness, using two objective methods. In 22 colicky horses, the blood flow, oxygen saturation and relative amount of haemoglobin were measured intraoperatively via laser Doppler and white light spectroscopy (O2C, oxygen to see, LEA Medizintechnik) at six measuring points (MPs) in small and large intestines. Furthermore, the IW thickness was measured ultrasonographically. Nine of 22 horses had an increased small IW thickness greater than 4?mm (Freeman 2002, Scharner and others 2002, le Jeune and Whitcomb 2014) at measuring point 1 (MP1) (strangulated segment), four horses had a thickened bowel wall at measuring point 3 (MP3) (poststenotic) and one at measuring point 2 (MP2). The oxygen saturation was 0 at MP1 in six horses, at MP3 in two horses and at MP2 (prestenotic) in one. Oxygen saturation and small IW thickness were independent of each other at MP1 and MP2. At MP3, the two parameters were negatively correlated. In summary, it is not possible to draw conclusions about oxygen saturation based on IW thickness

    Loring-Greenough House, North Yard Archaeogeophysics, Jamaica Plain, Massachusetts

    Get PDF
    An archaeogeophysical survey was carried out in May 2010 using Geonics EM-38 RT and a Malå Ground Penetrating Radar (GPR) system with a 500 MHz antenna over an 28x26 m grid immediately northeast of the Loring-Greenough house in Jamaica Plain, MA. Three major anomalies were identified. These anomalies have not been ground truthed, but they appear to be archaeological features. First, we suggest that there is builders trench just north of the house. Second, we suggest that there could be three east-west garden paths or other landscape features about 30 cm below the surface crossing the entire length of the survey grid. Third, we suggest that there could be a buried foundation or cellar hole 110 cm below the ground surface and 20 m north of the house. We recommend additional archaegeophysics be performed at the Loring-Greenough house, as well as a program of exploratory archaeological investigations with the goal of better understanding the past landscape around the house

    Scientific objectives and first results from COMPTEL

    Get PDF
    The imaging Compton telescope (COMPTEL) is the first imaging telescope in space to explore the MeV gamma ray range. At present it is performing a complete sky survey. In later phases of the mission, selected celestial objects will be studied in more detail. Targets of special interest in the COMPTEL energy range are radio pulsars, X-ray binaries, novae, supernova remnants, molecular clouds, and the interstellar medium within the Milky Way, as well as the nuclei of active galaxies, supernovae, and the diffuse cosmic background radiation in extragalactic space. The first four months of operation demonstrated that COMPTEL basically performs as expected. The Crab is clearly seen at its proper position in the first images of the anticenter region of the Galaxy. The Crab pulsar lightcurve was measured with unprecedented accuracy. The quasar 3C273 was seen for the first time at MeV-energies. Several cosmic bursts within the COMPTEL field of view could be located to an accuracy of about 1 degree. On June 9, 11, and 15, 1991 COMPTEL observed gamma ray (continuum and line) emission from three solar flares. Neutrons were also detected from the June 9 flare. At the present state of analysis, COMPTEL achieves the prelaunch predictions of its sensitivity within a factor of 2. Based on the present performance of COMPTEL, the team is confident that COMPTEL will fulfill its primary mission of surveying and exploring the MeV sky

    The Spectral Variability of Cygnus X-1 at MeV Energies

    Get PDF
    In previous work, we have used data from the first three years of the CGRO mission to assemble a broad-band γ\gamma-ray spectrum of the galactic black hole candidate Cygnus X-1. Contemporaneous data from the COMPTEL, OSSE and BATSE experiments on CGRO were selected on the basis of the hard X-ray flux (45--140 keV) as measured by BATSE. This provided a spectrum of Cygnus X-1 in its canonical low X-ray state (as measured at energies below 10 keV), covering the energy range from 50 keV to 5 MeV. Here we report on a comparison of this spectrum to a COMPTEL-OSSE spectrum collected during a high X-ray state of Cygnus X-1 (May, 1996). These data provide evidence for significant spectral variability at energies above 1 MeV. In particular, whereas the hard X-ray flux {\it decreases} during the high X-ray state, the flux at energies above 1 MeV {\it increases}, resulting in a significantly harder high energy spectrum. This behavior is consistent with the general picture of galactic black hole candidates having two distinct spectral forms at soft γ\gamma-ray energies. These data extend this picture, for the first time, to energies above 1 MeV.Comment: 5 pages, 4 figures, to be published in AIP Conf. Proc., "The Fifth Compton Symposium

    Measurements of Gamma-Ray Bursts (GRBs) with Glast

    Full text link
    One of the scientific goals of the main instrument of GLAST is the study of Gamma-Ray Bursts (GRBs) in the energy range from ~20 MeV to ~300 GeV. In order to extend the energy measurement towards lower energies a secondary instrument, the GLAST Burst Monitor (GBM), will measure GRBs from ~10 keV to ~25 MeV and will therefore allow the investigation of the relation between the keV and the MeV-GeV emission from GRBs over six energy decades. These unprecedented measurements will permit the exploration of the unknown aspects of the high-energy burst emission and the investigation of their connection with the well-studied low-energy emission. They will also provide ne insights into the physics of GRBs in general. In addition the excellent localization of GRBs by the LAT will stimulate follow-up observations at other wavelengths which may yield clues about the nature of the burst sources.Comment: 6 pages, 2 figures, to be published in Baltic Astronomy - Proceedings of the minisymposium "Physics of Gamma-Ray Bursts", JENAM Conference, August 29-30, 2003, Budapes

    COMPTEL observations of the quasar PKS 0528+134 during the first 3.5 years of the CGRO mission

    Get PDF
    The COMPTEL observations of the blazar-type quasar PKS 0528+134 in the energy range 0.75 MeV to 30 MeV carried out between April 1991 and September 1994 have been analyzed. During the first two years PKS 0528+134 was most significantly detected at energies above 3 MeV. During the last year there is only evidence for the quasar at energies below 3 MeV indicating a spectral change. The time-averaged COMPTEL energy spectrum between 0.75 MeV and 30 MeV is well represented by a power-law shape. Spectra collected from different observational periods reveal different power-law shapes: a hard state during flaring observations reported by EGRET, and a soft state otherwise. The combined simultaneous EGRET and COMPTEL spectra indicate these two spectral states as well. During low intensisty gamma-ray phases no spectral break is obvious from the combined COMPTEL and EGRET measurements. For the gamma-ray flaring phases however, the combined COMPTEL and EGRET data require a spectral bending at MeV-energies. By fitting broken power-law functions the best-fit values for the break in photon index range between 0.6 and 1.7, and for the break energy between ~5 MeV and ~20 MeV. Because the flux values measured by COMPTEL below 3 MeV in both states are roughly equal, the observations would be consistent with an additional spectral component showing up during gamma-ray flaring phases of PKS 0528+134. Such a component could be introduced by e.g. a high-energy electron-positron population with a low-energy cutoff in their bulk Lorentz factor distribution. The multiwavelength spectrum of PKS 0528+134 for gamma-ray flaring phases shows that the major energy release across the entire electro-magnetic spectrum is measured at MeV-energies.Comment: 10 pages, 8 postscript figures, latex, to appear in: A&A 328, 33 (1997
    corecore