134 research outputs found

    The Star Cluster Population of M51: II. Age distribution and relations among the derived parameters

    Get PDF
    We use archival Hubble Space Telescope observations of broad-band images from the ultraviolet (F255W-filter) through the near infrared (NICMOS F160W-filter) to study the star cluster population of the interacting spiral galaxy M 51. We obtain age, mass, extinction, and effective radius estimates for 1152 star clusters in a region of ~7.3 × 8.1 kpc centered on the nucleus and extending into the outer spiral arms. In this paper we present the data set and exploit it to determine the age distribution and relationships among the fundamental parameters (i.e. age, mass, effective radius). We show the critical dependence of the age distribution on the sample selection, and confirm that using a constant mass cut-off, above which the sample is complete for the entire age range of interest, is essential. In particular, in this sample we are complete only for masses above 5× 104~M? for the last 1 Gyr. Using this dataset we find: i) that the cluster formation rate seems to have had a large increase ~50-70 Myr ago, which is coincident with the suggested second passage of its companion, NGC 5195; ii) a large number of extremely young (<10 Myr) star clusters, which we interpret as a population of unbound clusters of which a large majority will disrupt within the next ~10 Myr; and iii) that the distribution of cluster sizes can be well approximated by a power-law with exponent, -? = -2.2 ± 0.2, which is very similar to that of Galactic globular clusters, indicating that cluster disruption is largely independent of cluster radius. In addition, we have used this dataset to search for correlations among the derived parameters. In particular, we do not find any strong trends between the age and mass, mass and effective radius, nor between the galactocentric distance and effective radius. There is, however, a strong correlation between the age of a cluster and its extinction, with younger clusters being more heavily reddened than older clusters

    Inleiding

    Get PDF

    Hierarchical Star-Formation in M33: Fundamental properties of the star-forming regions

    Full text link
    Star-formation within galaxies appears on multiple scales, from spiral structure, to OB associations, to individual star clusters, and often sub-structure within these clusters. This multitude of scales calls for objective methods to find and classify star-forming regions, regardless of spatial size. To this end, we present an analysis of star-forming groups in the local group spiral galaxy M33, based on a new implementation of the Minimum Spanning Tree (MST) method. Unlike previous studies which limited themselves to a single spatial scale, we study star-forming structures from the effective resolution limit (~20pc) to kpc scales. We find evidence for a continuum of star-forming group sizes, from pc to kpc scales. We do not find a characteristic scale for OB associations, unlike that found in previous studies, and we suggest that the appearance of such a scale was caused by spatial resolution and selection effects. The luminosity function of the groups is found to be well represented by a power-law with an index, -2, similar to that found for clusters and GMCs. Additionally, the groups follow a similar mass-radius relation as GMCs. The size distribution of the groups is best described by a log-normal distribution and we show that within a hierarchical distribution, if a scale is selected to find structure, the resulting size distribution will have a log-normal distribution. We find an abrupt drop of the number of groups outside a galactic radius of ~4kpc, suggesting a change in the structure of the star-forming ISM, possibly reflected in the lack of GMCs beyond this radius. (abridged)Comment: 12 pages, 16 figures, accepted MNRA

    Understanding the Dynamical State of Globular Clusters: Core-Collapsed vs Non Core-Collapsed

    Full text link
    We study the dynamical evolution of globular clusters using our H\'enon-type Monte Carlo code for stellar dynamics including all relevant physics such as two-body relaxation, single and binary stellar evolution, Galactic tidal stripping, and strong interactions such as physical collisions and binary mediated scattering. We compute a large database of several hundred models starting from broad ranges of initial conditions guided by observations of young and massive star clusters. We show that these initial conditions very naturally lead to present day clusters with properties including the central density, core radius, half-light radius, half-mass relaxation time, and cluster mass, that match well with those of the old Galactic globular clusters. In particular, we can naturally reproduce the bimodal distribution in observed core radii separating the "core-collapsed" vs the "non core-collapsed" clusters. We see that the core-collapsed clusters are those that have reached or are about to reach the equilibrium "binary burning" phase. The non core-collapsed clusters are still undergoing gravo-thermal contraction.Comment: 42 pages, 12 figures, 1 table, submitted to MNRA

    Monte Carlo Simulations of Globular Cluster Evolution. V. Binary Stellar Evolution

    Full text link
    We study the dynamical evolution of globular clusters containing primordial binaries, including full single and binary stellar evolution using our Monte Carlo cluster evolution code updated with an adaptation of the single and binary stellar evolution codes SSE/BSE from Hurley et. al (2000, 2002). We describe the modifications we have made to the code. We present several test calculations and comparisons with existing studies to illustrate the validity of the code. We show that our code finds very good agreement with direct N-body simulations including primordial binaries and stellar evolution. We find significant differences in the evolution of the global properties of the simulated clusters using stellar evolution compared to simulations without any stellar evolution. In particular, we find that the mass loss from stellar evolution acts as a significant energy production channel simply by reducing the total gravitational binding energy and can significantly prolong the initial core contraction phase before reaching the binary-burning quasi steady state of the cluster evolution as noticed in Paper IV. We simulate a large grid of clusters varying the initial cluster mass, binary fraction, and concentration and compare properties of the simulated clusters with those of the observed Galactic globular clusters (GGCs). We find that our simulated cluster properties agree well with the observed GGC properties. We explore in some detail qualitatively different clusters in different phases of their evolution, and construct synthetic Hertzprung-Russell diagrams for these clusters.Comment: 46 preprint pages, 18 figures, 3 tables, submitted to Ap
    corecore