177 research outputs found

    Convective transport of very short lived bromocarbons to the stratosphere

    Get PDF
    We use the NASA Goddard Earth Observing System (GEOS) Chemistry Climate Model (GEOSCCM) to quantify the contribution of the two most important brominated very short lived substances (VSLSs), bromoform (CHBr<sub>3</sub>) and dibromomethane (CH<sub>2</sub>Br<sub>2</sub>), to stratospheric bromine and its sensitivity to convection strength. Model simulations suggest that the most active transport of VSLSs from the marine boundary layer through the tropopause occurs over the tropical Indian Ocean, the tropical western Pacific, and off the Pacific coast of Mexico. Together, convective lofting of CHBr<sub>3</sub> and CH<sub>2</sub>Br<sub>2</sub> and their degradation products supplies ~8 ppt total bromine to the base of the tropical tropopause layer (TTL, ~150 hPa), similar to the amount of VSLS organic bromine available in the marine boundary layer (~7.8–8.4 ppt) in the active convective lofting regions mentioned above. Of the total ~8 ppt VSLS bromine that enters the base of the TTL at ~150 hPa, half is in the form of organic source gases and half in the form of inorganic product gases. Only a small portion (<10%) of the VSLS-originated bromine is removed via wet scavenging in the TTL before reaching the lower stratosphere. On average, globally, CHBr<sub>3</sub> and CH<sub>2</sub>Br<sub>2</sub> together contribute ~7.7 pptv to the present-day inorganic bromine in the stratosphere. However, varying model deep-convection strength between maximum (strongest) and minimum (weakest) convection conditions can introduce a ~2.6 pptv uncertainty in the contribution of VSLSs to inorganic bromine in the stratosphere (Br<sub>y</sub><sup>VSLS</sup>). Contrary to conventional wisdom, the minimum convection condition leads to a larger Br<sub>y</sub><sup>VSLS</sup> as the reduced scavenging in soluble product gases, and thus a significant increase in product gas injection (2–3 ppt), greatly exceeds the relatively minor decrease in source gas injection (a few 10ths ppt)

    Extreme deuterium enrichment in stratospheric hydrogen and the global atmospheric budget of H_2

    Get PDF
    Molecular hydrogen (H_2) is the second most abundant trace gas in the atmosphere after methane (CH_4). In the troposphere, the D/H ratio of H_2 is enriched by 120‰ relative to the world's oceans. This cannot be explained by the sources of H_2 for which the D/H ratio has been measured to date (for example, fossil fuels and biomass burning). But the isotopic composition of H_2 from its single largest source—the photochemical oxidation of methane—has yet to be determined. Here we show that the D/H ratio of stratospheric H2 develops enrichments greater than 440‰, the most extreme D/H enrichment observed in a terrestrial material. We estimate the D/H ratio of H_2 produced from CH_4 in the stratosphere, where production is isolated from the influences of non-photochemical sources and sinks, showing that the chain of reactions producing H_2 from CH_4 concentrates D in the product H_2. This enrichment, which we estimate is similar on a global average in the troposphere, contributes substantially to the D/H ratio of tropospheric H_2

    Large and unexpected enrichment in stratospheric ^(16)O^(13)C^(18)O and its meridional variation

    Get PDF
    The stratospheric CO_2 oxygen isotope budget is thought to be governed primarily by the O(1D)+CO_2 isotope exchange reaction. However, there is increasing evidence that other important physical processes may be occurring that standard isotopic tools have been unable to identify. Measuring the distribution of the exceedingly rare CO_2 isotopologue ^(16)O^(13)C^(18)O, in concert with ^(18)O and ^(17)O abundances, provides sensitivities to these additional processes and, thus, is a valuable test of current models. We identify a large and unexpected meridional variation in stratospheric 16O13C18O, observed as proportions in the polar vortex that are higher than in any naturally derived CO_2 sample to date. We show, through photochemical experiments, that lower ^(16)O^(13)C^(18)O proportions observed in the midlatitudes are determined primarily by the O(1D)+CO_2 isotope exchange reaction, which promotes a stochastic isotopologue distribution. In contrast, higher ^(16)O^(13)C^(18)O proportions in the polar vortex show correlations with long-lived stratospheric tracer and bulk isotope abundances opposite to those observed at midlatitudes and, thus, opposite to those easily explained by O(1D)+CO_2. We believe the most plausible explanation for this meridional variation is either an unrecognized isotopic fractionation associated with the mesospheric photochemistry of CO_2 or temperature-dependent isotopic exchange on polar stratospheric clouds. Unraveling the ultimate source of stratospheric ^(16)O^(13)C^(18)O enrichments may impose additional isotopic constraints on biosphere–atmosphere carbon exchange, biosphere productivity, and their respective responses to climate change

    Scaling laws in velocity-selective coherent population trapping in the presence of polarization-gradient cooling

    Get PDF
    One-dimensional laser cooling based on velocity-selective coherent population trapping (VSCPT) on a 2g→1e transition has been investigated numerically through the solution of the optical Bloch equations. As in the work of G. Morigi et al. [Phys. Rev. A 53, 2616 (1996)], it has been found that for a large set of atomic and laser parameters, the VSCPT cooling process may be described through scaling-law relations. The scaling laws are based on the relations between the loss rates at large atomic momentum and their dependence on the momentum around zero value. The role of the laser detuning on the VSCPT trapping efficiency has been examined and scaling laws including the detuning have been derived

    CAM6-chem with very short-lived halogen chemistry: evaluation with the whole air sampler aircraft data from multiple seasons and locations

    Get PDF
    A new version of the Community Atmosphere Model with chemistry (CAM6-chem) has recently been released to the atmospheric science community (June 2018). CAM6-chem has updated boundary layer processes, shallow convection and liquid cloud macrophysics, and two-moment cloud microphysics with prognostic cloud mass andconcentration. A 4-mode prognostic aerosol representation (MAM4) has been added that includes a representation of dust, sea-salt black carbon, organic carbon, and sulfate in three size categories (Gettelman et al., 2019). CAM6-Chem has a detailed representation of both tropospheric and stratospheric chemistry. The tropospheric chemistry includes updates to the representation the organic nitrates, isoprene oxidization, and the speciation of the aromaticand terpenes (Emmons et al., 2019). This mechanism also includes a comprehensive secondary organic aerosol parameterization based on the Volatility Basic Set (VBS) model framework (Hodzic et al. 2016; Tilmes et al., 2019). The stratospheric halogen chemistry represents the distribution of CH3Cl, CFCs, HCFCs, CH3Br, and halons (Kinnison et al., 2007). For this study, the emissions, wet and dry depositions, and chemical processes that represent Very Short-Lived Halogens (VSLH) were added (e.g., Saiz-Lopez et al., 2016). Evaluation of the organic VSLH distributions are to compare with trace gas measurements collected during seven field campaigns, two withmultiple deployments, to evaluate the model performance over multiple years. The campaigns include HIPPO (2009-2011) pole to pole observations in the Pacific on the NSF/NCAR GV over multiple seasons; SEAC4RS (Aug./Sept., 2013) in the central and southern U.S. and western Gulf of Mexico on the NASA ER-2 and DC8; ATTREX (2011-2015) on the NASA Global Hawk over multiple seasons and locations; CONTRAST (Jan/Feb, 2014) in the western Pacific on the NSF/NCAR GV; VIRGAS (Oct., 2015) in the south central US and western Gulf of Mexico on the NASA WB-57; ORCAS (Jan/Feb, 2016) over the southern ocean on the NSF/NCAR GV; and POSIDON (Oct, 2016) in the western Pacific on the NASA WB-57. The model was ?nudged? to NASA Modern-Era Retrospective analysis for Research and Applications, version 2 meteorological fields to represent the synoptic meteorology for each mission. The analysis will focus on along the flight tracks comparisons with the model and will also examine comparisons of vertical distributions and various tracer-tracer correlations. Implications of this new model version on estimated input of inorganic bromine and iodine into the lower stratosphere will be discussed.Fil: Kinnisson, Douglas E.. National Center for Atmospheric Research; Estados UnidosFil: Saiz Lopez, Alfonso. Consejo Superior de Investigaciones Científicas. Instituto de Química Física "Rocasolano"; EspañaFil: Cuevas, Carlos Alberto. Consejo Superior de Investigaciones Científicas. Instituto de Química Física "Rocasolano"; EspañaFil: Fernandez, Rafael Pedro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; Argentina. Universidad Nacional de Cuyo. Facultad de Ciencias Exactas y Naturales; Argentina. Universidad Tecnológica Nacional; ArgentinaFil: Lamarque, Jean Francoise. National Center for Atmospheric Research; Estados UnidosFil: Tilmes, Simone. National Center for Atmospheric Research; Estados UnidosFil: Emmons, Louisa K.. National Center for Atmospheric Research; Estados UnidosFil: Hodzic, Alma. National Center for Atmospheric Research; Estados UnidosFil: Wang, Siyuan. National Center for Atmospheric Research; Estados UnidosFil: Schauffler, Sue M.. National Center for Atmospheric Research; Estados UnidosFil: Navarro, María. University Of Miami. Rosenstiel School Of Marine Atmospheric Science; Estados UnidosFil: Atlas, Elliot. University Of Miami. Rosenstiel School Of Marine Atmospheric Science; Estados UnidosEGU General Assembly 2019VienaAustriaEuropean Geociences Unio

    Changes in the photochemical environment of the temperate North Pacific troposphere in response to increased Asian emissions

    Get PDF
    Measurements during the Intercontinental Transport and Chemical Transformation 2002 (ITCT 2K2) field study characterized the springtime, eastern Pacific ozone distribution at two ground sites, from the National Oceanic and Atmospheric Administration WP-3D aircraft, and from a light aircraft operated by the University of Washington. D. Jaffe and colleagues compared the 2002 ozone distribution with measurements made in the region over the two previous decades and show that average ozone levels over the eastern midlatitude Pacific have systematically increased by ∼10 ppbv in the last two decades. Here we provide substantial evidence that a marked change in the photochemical environment in the springtime troposphere of the North Pacific is responsible for this increased O3. This change is evidenced in the eastern North Pacific ITCT 2K2 study region by (1) larger increases in the minimum observed ozone levels compared to more modest increases in the maximum levels, (2) increased peroxyacetyl nitrate (PAN) levels that parallel trends in NOx, emissions, and (3) decreased efficiency of photochemical O3 destruction, i.e., less negative O3 photochemical tendency (or net rate of O3 photochemical production; P(O3)). This change photochemical environment is hypothesized to be due to anthropogenic emissions from Asia, which are believed to have substantially increased over the two decades preceding the study. We propose that their influence has changed the springtime Pacific tropospheric photochemistry from predominately ozone destroying to more nearly ozone producing. However, chemical transport model calculations indicate the possible influence of a confounding factor; unusual transport of tropical air to the western North Pacific during one early field study may have played a role in this apparent change in the photochemistry. Copyright 2004 by the American Geophysical Union

    Isotopic ordering in atmospheric O2 as a tracer of ozone photochemistry and the tropical atmosphere

    Get PDF
    The distribution of isotopes within O2 molecules can be rapidly altered when they react with atomic oxygen. This mechanism is globally important: while other contributions to the global budget of O2 impart isotopic signatures, the O(3P) + O2 reaction resets all such signatures in the atmosphere on subdecadal timescales. Consequently, the isotopic distribution within O2 is determined by O3 photochemistry and the circulation patterns that control where that photochemistry occurs. The variability of isotopic ordering in O2 has not been established, however. We present new measurements of 18O18O in air (reported as Δ36 values) from the surface to 33 km altitude. They confirm the basic features of the clumped-isotope budget of O2: Stratospheric air has higher Δ36 values than tropospheric air (i.e., more 18O18O), reflecting colder temperatures and fast photochemical cycling of O3. Lower Δ36 values in the troposphere arise from photochemistry at warmer temperatures balanced by the influx of high-Δ36 air from the stratosphere. These observations agree with predictions derived from the GEOS-Chem chemical transport model, which provides additional insight. We find a link between tropical circulation patterns and regions where Δ36 values are reset in the troposphere. The dynamics of these regions influences lapse rates, vertical and horizontal patterns of O2 reordering, and thus the isotopic distribution toward which O2 is driven in the troposphere. Temporal variations in Δ36 values at the surface should therefore reflect changes in tropospheric temperatures, photochemistry, and circulation. Our results suggest that the tropospheric O3 burden has remained within a ±10% range since 1978

    Estimating the climate significance of halogen-driven ozone loss in the tropical marine troposphere

    Get PDF
    We have integrated observations of tropospheric ozone, very short-lived (VSL) halocarbons and reactive iodine and bromine species from a wide variety of tropical data sources with the global CAM-Chem chemistry-climate model and offline radiative transfer calculations to compute the contribution of halogen chemistry to ozone loss and associated radiative impact in the tropical marine troposphere. The inclusion of tropospheric halogen chemistry in CAM-Chem leads to an annually averaged depletion of around 10% (~2.5 Dobson units) of the tropical tropospheric ozone column, with largest effects in the middle to upper troposphere. This depletion contributes approximately −0.10 W m&lt;sup&gt;−2&lt;/sup&gt; to the radiative flux at the tropical tropopause. This negative flux is of similar magnitude to the ~0.33 W m&lt;sup&gt;−2&lt;/sup&gt; contribution of tropospheric ozone to present-day radiative balance as recently estimated from satellite observations. We find that the implementation of oceanic halogen sources and chemistry in climate models is an important component of the natural background ozone budget and we suggest that it needs to be considered when estimating both preindustrial ozone baseline levels and long term changes in tropospheric ozone
    • …
    corecore