2,959 research outputs found
Mapping customer needs to engineering characteristics: an aerospace perspective for conceptual design
Designing complex engineering systems, such as an aircraft or an aero-engine, is immensely challenging. Formal Systems Engineering (SE) practices are widely used in the aerospace industry throughout the overall design process to minimise the overall design effort, corrective re-work, and ultimately overall development and manufacturing costs. Incorporating the needs and requirements from customers and other stakeholders into the conceptual and early design process is vital for the success and viability of any development programme. This paper presents a formal methodology, the Value-Driven Design (VDD) methodology that has been developed for collaborative and iterative use in the Extended Enterprise (EE) within the aerospace industry, and that has been applied using the Concept Design Analysis (CODA) method to map captured Customer Needs (CNs) into Engineering Characteristics (ECs) and to model an overall ‘design merit’ metric to be used in design assessments, sensitivity analyses, and engineering design optimisation studies. Two different case studies with increasing complexity are presented to elucidate the application areas of the CODA method in the context of the VDD methodology for the EE within the aerospace secto
AC Loss and Contact Resistance In Copper-Stabilized Nb3Al Rutherford Cables with and without a Stainless Steel Core
Calorimetric measurements of AC loss and hence interstrand contact resistance
(ICR), were measured on three samples of Rutherford cable wound with
Cu-stabilized jelly-roll type unplated Nb3Al strand. One of the cable types was
furnished with a thin core of AISI 316L stainless steel and the other two were
both uncored but insulated in different ways. The cables were subjected to a
room-temperature-applied uniaxial pressure of 12 MPa that was maintained during
the reaction heat treatment (RHT), then vacuum impregnated with CTD 101 epoxy,
and repressurized to 100 MPa during AC-loss measurement. The measurements were
performed at 4.2 K in a sinusoidal field of amplitude 400 mT at frequencies of
1 to 90 mHz (no DC-bias field) that was applied both perpendicular and parallel
to the face of the cable (the face-on, FO, and edge-on, EO, directions,
respectively). For the cored cable the FO-measured effective ICR (FO-ICR), was
5.27 . Those for the uncored cables were less than 0.08
. As shown previously for NbTi- and Nb3Sn-based Rutherford
cables, the FO-ICR can be significantly increased by the insertion of a core,
although in this case it is still below the range recommended for
accelerator-magnet use. Post-measurement dissection of one of the cables showed
that the impregnating resin had permeated between the strands and coated the
core with a thin, insulating layer excepting for some sintered points of
contact. In the uncored cables the strands were coated with resin except for
the points of interstrand contact. It is suggested that in the latter case this
tendency for partial coating leads to a processing-sensitive FO-ICR.Comment: Four pages, with two figure
Genetic diversity of eukaryotic ultraphytoplankton in the Gulf of Naples during an annual cycle
Eukaryotic ultraphytoplankton (<5 μm) are an important component of phytoplankton populations, Dot blot hybridisation analysis using class level 16S rRNA gene probes as well as clone libraries were used to investigate the diversity of these ultraphytoplankton during a 15 mo period (2003 to 2004) in the Gulf of Naples. Hybridisation data showed the presence of 3 main classes, Cryptophyceae, Chrysophyceae and Prymnesiophyceae, along with lower signals from the Pelagophyceae. Clone libraries also contained these 4 classes as well as sequences from the Dictyochophyceae, Bacillariophyceae and Prasinophyceae. However, the Prymnesiophyceae gave the dominant hybridisation signal and constituted the majority of each clone library. Their diversity, with a total of 190 sequences belonging to 114 operational taxonomic units (OTUs), probably allows them to dominate the ultraphytoplankton throughout the whole year under differing environmental conditions. Over 100 of these OTUs were unique to different libraries, suggesting a succession of different taxa during the year. The Cryptophyceae were present most of the year with 1 OTU, corresponding to a Plagioselmis prolonga strain from the Gulf of Naples, being the dominant taxon (28 % of sequences). A striking result was the high hybridisation signal from the Chrysophyceae, which showed a preference for the summer months. The Pelagophyceae were present between December and March. Most (80 %) of the sequences found in the clone libraries were not identical to available 16S rRNA gene sequences, indicating a high amount of hidden diversity for these algal classes. However, sequences from Prasinophyceae Clade II (Mamiellales) were not detected in the clone libraries
Huisgen-based conjugation of water-soluble porphyrins to deprotected sugars: Towards mild strategies for the labelling of glycans
Fully deprotected alkynyl-functionalised mono- and oligosaccharides undergo CuAAC-based conjugation with water-soluble porphyrin azides in aqueous environments. The mild reaction conditions are fully compatible with the presence of labile glycosidic bonds. This approach provides an ideal strategy to conjugate tetrapyrroles to complex carbohydrates
Development of design allowable data for Celion 6000/LARC-160, graphite/polyimide composite laminates
A design allowables test program was conducted on Celion 6000/LARC-160 graphite polyimide composite to establish material performance over a 116 K (-250 F) to 589 K (600 F) temperature range. Tension, compression, in-plane shear and short beam shear properties were determined for uniaxial, quasi-isotropic and + or - 45 deg laminates. Effects of thermal aging and moisture saturation on mechanical properties were also evaluated. Celion 6000/LARC-160 graphite/polyimide can be considered an acceptable material system for structural applications to 589 K (600 F)
A fiber-optic strain measurement and quench localization system for use in superconducting accelerator dipole magnets
A novel fiber-optic measurement system for superconducting accelerator magnets is described. The principal component is an extrinsic Fabry-Perot interferometer to determine localized strain and stress in coil windings. The system can be used either as a sensitive relative strain measurement system or as an absolute strain detector. Combined, one can monitor the mechanical behaviour of the magnet system over time during construction, long time storage and operation. The sensing mechanism is described, together with various tests in laboratory environments. The test results of a multichannel test matrix to be incorporated first in the dummy coils and then in the final version of a 13 T Nb/sub 3/Sn accelerator dipole magnet are presented. Finally, the possible use of this system as a quench localization system is proposed
Football in the community schemes: Exploring the effectiveness of an intervention in promoting healthful behaviour change
This study aims to examine the effectiveness of a Premier League football club’s Football in the Community (FitC) schemes intervention in promoting positive healthful behaviour change in children. Specifically, exploring the effectiveness of this intervention from the perspectives of the participants involved (i.e. the researcher, teachers, children and coaches). A range of data collection techniques were utilized including the principles of ethnography (i.e. immersion, engagement and observations), alongside conducting focus groups with the children. The results allude to the intervention merely ‘keeping active children active’ via (mostly) fun, football sessions. Results highlight the important contribution the ‘coach’ plays in the effectiveness of the intervention. Results relating to working practice (i.e. coaching practice and coach recruitment) are discussed and highlighted as areas to be addressed. FitC schemes appear to require a process of positive organizational change to increase their effectiveness in strategically attending to the health agenda
Dominant oceanic bacteria secure phosphate using a large extracellular buffer
The ubiquitous SAR11 and Prochlorococcus bacteria manage to maintain a sufficient supply of phosphate in phosphate-poor surface waters of the North Atlantic subtropical gyre. Furthermore, it seems that their phosphate uptake may counter-intuitively be lower in more productive tropical waters, as if their cellular demand for phosphate decreases there. By flow sorting 33P-phosphate-pulsed 32P-phosphate-chased cells, we demonstrate that both Prochlorococcus and SAR11 cells exploit an extracellular buffer of labile phosphate up to 5–40 times larger than the amount of phosphate required to replicate their chromosomes. Mathematical modelling is shown to support this conclusion. The fuller the buffer the slower the cellular uptake of phosphate, to the point that in phosphate-replete tropical waters, cells can saturate their buffer and their phosphate uptake becomes marginal. Hence, buffer stocking is a generic, growth-securing adaptation for SAR11 and Prochlorococcus bacteria, which lack internal reserves to reduce their dependency on bioavailable ambient phosphate
Niobium based intermetallics as a source of high-current/high-magnetic field superconductors
The article is focused on low temperature intermetallic A15 superconducting
wires development for Nuclear Magnetic Resonance, NMR, and Nuclear Magnetic
Imaging, MRI, magnets and also on cryogen-free magnets. There are many other
applications which would benefit from new development such as future Large
Hadron Collider to be built from A15 intermetallic conductors. This paper
highlights the current status of development of the niobium based
intermetallics with special attention to Nb 3 (Al 1-x, Ge x). Discussion is
focused on the materials science aspects of conductor manufacture, such as
b-phase (A15) formation, with particular emphasis on the maximisation of the
superconducting parameters, such as critical current density, Jc, critical
temperature, Tc, and upper critical field, Hc2 . Many successful manufacturing
techniques of the potential niobium-aluminide intermetallic superconducting
conductors, such as solid-state processing, liquid-solid processing, rapid
heating/cooling processes, are described, compared and assessed. Special
emphasis has been laid on conditions under which the Jc (B) peak effect occurs
in some of the Nb3(Al,Ge) wires. A novel electrodeoxidizing method developed in
Cambridge whereby the alloys and intermetallics are produced cheaply making all
superconducting electromagnetic devices, using low cost LTCs, more cost
effective is presented.This new technique has potential to revolutionise the
existing superconducting industry enabling reduction of cost orders of
magnitude.Comment: Paper presented at EUCAS'01 conference, Copenhagen, 26-30 August 200
Challenges to the development of antigen-specific breast cancer vaccines
Continued progress in the development of antigen-specific breast cancer vaccines depends on the identification of appropriate target antigens, the establishment of effective immunization strategies, and the ability to circumvent immune escape mechanisms. Methods such as T cell epitope cloning and serological expression cloning (SEREX) have led to the identification of a number target antigens expressed in breast cancer. Improved immunization strategies, such as using dendritic cells to present tumor-associated antigens to T lymphocytes, have been shown to induce antigen-specific T cell responses in vivo and, in some cases, objective clinical responses. An outcome of successful tumor immunity is the evolution of antigen-loss tumor variants. The development of a polyvalent breast cancer vaccine, directed against a panel of tumor-associated antigens, may counteract this form of immune escape
- …
