119 research outputs found

    Diseño de una metodología para la gestión sostenible de los recursos en áreas marinas protegidas

    Get PDF
    La nueva Política Marina Integrada de la Unión Europea (UE) tiene como objetivo general la optimización y sostenibilidad de la explotación del mar. En este contexto, la figura de las Áreas Marinas Protegidas (AMPs) se plantea como un valioso instrumento para avanzar en la ordenación y gestión sostenible de los recursos marinos, permitiendo una gran variedad de alternativas en función del objetivo de conservación, el nivel de protección y las diferentes posibilidades de aprovechamiento de los recursos. Esta comunicación se centra en el diseño de una metodología de planificación que, incorporada al proceso de creación de un Área Marina Protegida (AMP), permita establecer una ordenación y gestión eficaz del espacio basada en el conocimiento, tanto de las características ambientales del medio marino, como de las presiones e impactos producidos por las actividades humanas. La metodología que se plantea, mediante instrumentos y herramientas de gestión concretas, permite definir objetivos específicos así como indicadores de seguimiento asociados, integrando en todas las fases del proceso a las organizaciones, grupos de interés e instituciones implicadas; de forma específica al sector pesquero, que ha de desempeñar un papel fundamental en el desarrollo de un nuevo modelo de conservación y gestión sostenible del medio marin

    Loss of Arf4 causes severe degeneration of the exocrine pancreas but not cystic kidney disease or retinal degeneration

    Get PDF
    Arf4 is proposed to be a critical regulator of membrane protein trafficking in early secretory pathway. More recently, Arf4 was also implicated in regulating ciliary trafficking, however, this has not been comprehensively tested in vivo. To directly address Arf4\u27s role in ciliary transport, we deleted Arf4 specifically in either rod photoreceptor cells, kidney, or globally during the early postnatal period. Arf4 deletion in photoreceptors did not cause protein mislocalization or retinal degeneration, as expected if Arf4 played a role in protein transport to the ciliary outer segment. Likewise, Arf4 deletion in kidney did not cause cystic disease, as expected if Arf4 were involved in general ciliary trafficking. In contrast, global Arf4 deletion in the early postnatal period resulted in growth restriction, severe pancreatic degeneration and early death. These findings are consistent with Arf4 playing a critical role in endomembrane trafficking, particularly in the pancreas, but not in ciliary function

    Wdpcp, a PCP Protein Required for Ciliogenesis, Regulates Directional Cell Migration and Cell Polarity by Direct Modulation of the Actin Cytoskeleton

    Get PDF
    Planar cell polarity (PCP) regulates cell alignment required for collective cell movement during embryonic development. This requires PCP/PCP effector proteins, some of which also play essential roles in ciliogenesis, highlighting the long-standing question of the role of the cilium in PCP. Wdpcp, a PCP effector, was recently shown to regulate both ciliogenesis and collective cell movement, but the underlying mechanism is unknown. Here we show Wdpcp can regulate PCP by direct modulation of the actin cytoskeleton. These studies were made possible by recovery of a Wdpcp mutant mouse model. Wdpcp-deficient mice exhibit phenotypes reminiscent of Bardet-Biedl/Meckel-Gruber ciliopathy syndromes, including cardiac outflow tract and cochlea defects associated with PCP perturbation. We observed Wdpcp is localized to the transition zone, and in Wdpcp-deficient cells, Sept2, Nphp1, and Mks1 were lost from the transition zone, indicating Wdpcp is required for recruitment of proteins essential for ciliogenesis. Wdpcp is also found in the cytoplasm, where it is localized in the actin cytoskeleton and in focal adhesions. Wdpcp interacts with Sept2 and is colocalized with Sept2 in actin filaments, but in Wdpcp-deficient cells, Sept2 was lost from the actin cytoskeleton, suggesting Wdpcp is required for Sept2 recruitment to actin filaments. Significantly, organization of the actin filaments and focal contacts were markedly changed in Wdpcp-deficient cells. This was associated with decreased membrane ruffling, failure to establish cell polarity, and loss of directional cell migration. These results suggest the PCP defects in Wdpcp mutants are not caused by loss of cilia, but by direct disruption of the actin cytoskeleton. Consistent with this, Wdpcp mutant cochlea has normal kinocilia and yet exhibits PCP defects. Together, these findings provide the first evidence, to our knowledge, that a PCP component required for ciliogenesis can directly modulate the actin cytoskeleton to regulate cell polarity and directional cell migration

    The Neural Basis of Decision-Making and Reward Processing in Adults with Euthymic Bipolar Disorder or Attention-Deficit/Hyperactivity Disorder (ADHD)

    Get PDF
    Attention-deficit/hyperactivity disorder (ADHD) and bipolar disorder (BD) share DSM-IV criteria in adults and cause problems in decision-making. Nevertheless, no previous report has assessed a decision-making task that includes the examination of the neural correlates of reward and gambling in adults with ADHD and those with BD

    Identification and Characterization of Novel Mutations in the Human Gene Encoding the Catalytic Subunit Calpha of Protein Kinase A (PKA)

    Get PDF
    The genes PRKACA and PRKACB encode the principal catalytic (C) subunits of protein kinase A (PKA) Cα and Cβ, respectively. Cα is expressed in all eukaryotic tissues examined and studies of Cα knockout mice demonstrate a crucial role for Cα in normal physiology. We have sequenced exon 2 through 10 of PRKACA from the genome of 498 Norwegian donors and extracted information about PRKACA mutations from public databases. We identified four interesting nonsynonymous point mutations, Arg45Gln, Ser109Pro, Gly186Val, and Ser263Cys, in the Cα1 splice variant of the kinase. Cα variants harboring the different amino acid mutations were analyzed for kinase activity and regulatory (R) subunit binding. Whereas mutation of residues 45 and 263 did not alter catalytic activity or R subunit binding, mutation of Ser109 significantly reduced kinase activity while R subunit binding was unaltered. Mutation of Cα Gly186 completely abrogated kinase activity and PKA type I but not type II holoenzyme formation. Gly186 is located in the highly conserved DFG motif of Cα and mutation of this residue to Val was predicted to result in loss of binding of ATP and Mg2+, which may explain the kinetic inactivity. We hypothesize that individuals born with mutations of Ser109 or Gly186 may be faced with abnormal development and possibly severe disease

    The Golgin GMAP210/TRIP11 Anchors IFT20 to the Golgi Complex

    Get PDF
    Eukaryotic cells often use proteins localized to the ciliary membrane to monitor the extracellular environment. The mechanism by which proteins are sorted, specifically to this subdomain of the plasma membrane, is almost completely unknown. Previously, we showed that the IFT20 subunit of the intraflagellar transport particle is localized to the Golgi complex, in addition to the cilium and centrosome, and hypothesized that the Golgi pool of IFT20 plays a role in sorting proteins to the ciliary membrane. Here, we show that IFT20 is anchored to the Golgi complex by the golgin protein GMAP210/Trip11. Mice lacking GMAP210 die at birth with a pleiotropic phenotype that includes growth restriction, ventricular septal defects of the heart, omphalocele, and lung hypoplasia. Cells lacking GMAP210 have normal Golgi structure, but IFT20 is no longer localized to this organelle. GMAP210 is not absolutely required for ciliary assembly, but cilia on GMAP210 mutant cells are shorter than normal and have reduced amounts of the membrane protein polycystin-2 localized to them. This work suggests that GMAP210 and IFT20 function together at the Golgi in the sorting or transport of proteins destined for the ciliary membrane

    Convergent genetic and expression data implicate immunity in Alzheimer's disease

    Get PDF
    Background Late–onset Alzheimer's disease (AD) is heritable with 20 genes showing genome wide association in the International Genomics of Alzheimer's Project (IGAP). To identify the biology underlying the disease we extended these genetic data in a pathway analysis. Methods The ALIGATOR and GSEA algorithms were used in the IGAP data to identify associated functional pathways and correlated gene expression networks in human brain. Results ALIGATOR identified an excess of curated biological pathways showing enrichment of association. Enriched areas of biology included the immune response (p = 3.27×10-12 after multiple testing correction for pathways), regulation of endocytosis (p = 1.31×10-11), cholesterol transport (p = 2.96 × 10-9) and proteasome-ubiquitin activity (p = 1.34×10-6). Correlated gene expression analysis identified four significant network modules, all related to the immune response (corrected p 0.002 – 0.05). Conclusions The immune response, regulation of endocytosis, cholesterol transport and protein ubiquitination represent prime targets for AD therapeutics

    Rare coding variants in PLCG2, ABI3, and TREM2 implicate microglial-mediated innate immunity in Alzheimer's disease

    Get PDF
    We identified rare coding variants associated with Alzheimer’s disease (AD) in a 3-stage case-control study of 85,133 subjects. In stage 1, 34,174 samples were genotyped using a whole-exome microarray. In stage 2, we tested associated variants (P<1×10-4) in 35,962 independent samples using de novo genotyping and imputed genotypes. In stage 3, an additional 14,997 samples were used to test the most significant stage 2 associations (P<5×10-8) using imputed genotypes. We observed 3 novel genome-wide significant (GWS) AD associated non-synonymous variants; a protective variant in PLCG2 (rs72824905/p.P522R, P=5.38×10-10, OR=0.68, MAFcases=0.0059, MAFcontrols=0.0093), a risk variant in ABI3 (rs616338/p.S209F, P=4.56×10-10, OR=1.43, MAFcases=0.011, MAFcontrols=0.008), and a novel GWS variant in TREM2 (rs143332484/p.R62H, P=1.55×10-14, OR=1.67, MAFcases=0.0143, MAFcontrols=0.0089), a known AD susceptibility gene. These protein-coding changes are in genes highly expressed in microglia and highlight an immune-related protein-protein interaction network enriched for previously identified AD risk genes. These genetic findings provide additional evidence that the microglia-mediated innate immune response contributes directly to AD development

    Minimal information for studies of extracellular vesicles (MISEV2023): From basic to advanced approaches

    Get PDF
    Extracellular vesicles (EVs), through their complex cargo, can reflect the state of their cell of origin and change the functions and phenotypes of other cells. These features indicate strong biomarker and therapeutic potential and have generated broad interest, as evidenced by the steady year-on-year increase in the numbers of scientific publications about EVs. Important advances have been made in EV metrology and in understanding and applying EV biology. However, hurdles remain to realising the potential of EVs in domains ranging from basic biology to clinical applications due to challenges in EV nomenclature, separation from non-vesicular extracellular particles, characterisation and functional studies. To address the challenges and opportunities in this rapidly evolving field, the International Society for Extracellular Vesicles (ISEV) updates its 'Minimal Information for Studies of Extracellular Vesicles', which was first published in 2014 and then in 2018 as MISEV2014 and MISEV2018, respectively. The goal of the current document, MISEV2023, is to provide researchers with an updated snapshot of available approaches and their advantages and limitations for production, separation and characterisation of EVs from multiple sources, including cell culture, body fluids and solid tissues. In addition to presenting the latest state of the art in basic principles of EV research, this document also covers advanced techniques and approaches that are currently expanding the boundaries of the field. MISEV2023 also includes new sections on EV release and uptake and a brief discussion of in vivo approaches to study EVs. Compiling feedback from ISEV expert task forces and more than 1000 researchers, this document conveys the current state of EV research to facilitate robust scientific discoveries and move the field forward even more rapidly
    corecore